Journal of Organometallic Chemistry, 131 (1977) 1-22 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

DIBORYLÄTHYLENVERBINDUNGEN ALS LIGANDEN IN METALLKOMPLEXEN

V *. THIADIBOROLEN-TRICARBONYLEISEN-KOMPLEXE: DARSTELLUNG, STRUKTUR- UND BINDUNGSVERHÄLTNISSE

1

WALTER SIEBERT *, ROLAND FULL, JOSEPH EDWIN, KLEMENS KINBERGER Fachbereich Chemie der Universität Marburg, Lahnberge 3550 Marburg (B.R.D.)

und CARL KRÜGER

Max-Planck-Institut für Kohlenforschung Mülheim/Ruhr (B.R.D.) (Eingegangen den 4. Oktober 1976)

Summary

3,4-Diethyl-1,2,5-thiadiborolenes (Ia–g, k) and $Fe_2(CO)_9$ react to give stable thiadiborolenetricarbonyliron complexes (IIa-g, k). In IIa the B-I function can be substituted by Me₂NH, Et_2O , AsF₃ and LiBH₄ to yield IIe, f, h and IIi, which leads to the synthesis of the unstable ligands 2,5-dihydro- and 2-fluoro-5-iodo-1.2.5-thiadiborolene in IIh and IIi. Rapid oxidation of IIe occurs with iodine liberating 2,5-bis(methylthio)-1,2,5-thiadiborolene, whereas IIa is only slowly attacked.

From nuclear magnetic resonance (¹H, ¹¹B) and infrared spectroscopic data it is shown that the bonding situation between the ligand and the $Fe(CO)_3$ fragment is characteristically influenced by the Lewis acidity of the boryl group. The ligand acts as a two-electron acceptor, the complexation is accompanied by the formation of the thiadiborolene dianion.

The X-ray structural analyses of Ie and IIe exhibit a significant shortening of the B-C-bond distances (0.04 Å) upon complexation of the planar 2,5-bis(dimethylamino)-1,2,5-thiadiborolene (Ie). Ie crystallizes in the space group Pccn with a = 5.6274(4), b = 14.9824(9), c = 15.921(1) Å and four molecules per unit cell. The tricarbonyliron complex IIe crystallizes in the space group PI with a = 9.0310(8), b = 9.7214(8), c = 11.0198(8) Å, $\alpha = 74.598(8), \beta = 89.658(9), \beta = 89.658(9),$ $\gamma = 74.744^{\circ}$, and two molecules per unit cell.

^{*} IV. Mitteilung a. Lit. 1

Zusammenfassung

3,4-Diäthyl-1,2,5-thiadiborolene (Ia–g, k) und Fe₂(CO)₉ reagieren zu stabilen Thiadiborolentricarbonyleisen-Komplexen (IIa–g, k). In IIa lässt sich die B–J-Funktion mittels Me₂NH, Et₂O, AsF₃ und LiBH₄ unter Bildung von IIe, f, h und IIi substituieren, was zur Synthese der instabilen Liganden 2,5-Dihydro- bzw. 2-Fluor-5-jod-1,2,5-thiadiborolen in IIh bzw. IIi führt. Mit Jod tritt rasche Oxidation von IIe unter Freisetzung von 2,5-Bis(methylthio)-1,2,5-thiadiborolen ein, während IIa nur langsam angegriffen wird.

Aus Kernresonanz (¹H, ¹¹B)- und Infrarot-spektroskopischen Daten folgt, dass die Bindungsbeziehung zwischen Ligand und Fe(CO)₃-Fragment in charakteristischer Weise von der Lewis-Acidität der Borylgruppe beeinflusst wird. Der Ligand wirkt als Zweielektronen-Akzeptor, mit der Komplexierung geht die Ausbildung des Thiadiborolen-Dianions einher.

Die Röntgenstrukturanalysen von Ie und IIe zeigen eine signifikante Verkürzung der B–C-Abstände (0.04 Å) als Folge der Komplexierung des planaren 2,5-Bis(dimethylamino)-1,2,5-thiadiborolens (Ie) an. Ie kristallisiert in der Raumgruppe *Pccn* mit a = 5.6274(4), b = 14.9824(9), c = 15.921(1) Å und vier Molekülen in der Elementarzelle. Der Tricarbonyleisen-Komplex IIe kristallisiert in der Raumgruppe $P\overline{1}$ mit a = 9.0310(8), b = 9.7214(8), c = 11.0198(8) Å, $\alpha =$ 74.598(8), $\beta = 89.658(9)$, $\gamma = 74.744(9)^{\circ}$ und zwei Molekülen in der Elementarzelle.

Einleitung

Thioborane besitzen als schwache Lewis-Säuren auch Elektronendonor-Eigenschaften, so dass sie als Komplexliganden fungieren können. Durch Umsetzung von Tris(acetonitril)-tricarbonylchrom mit Tris(methylthio)boran erhielten Nöth und Schuchardt [2] in geringer Ausbeute den gelben, instabilen Komplex $(CH_3S)_3B \cdot Cr(CO)_3$, dessen ¹¹B-NMR-Signal eine bemerkenswerte Hochfeldverschiebung von $\Delta\delta$ +41 ppm im Vergleich zum freien Liganden erfährt. Für den von Vahrenkamp [3] beschriebenen, thermolabilen Komplex $(CH_3)_2BSCH \cdot Cr (CO)_5$ wird ein $\Delta\delta$ -Wert von +21 ppm gefunden [4].

Da Thioborane mit einem B : S-Verhältnis < 1 thermisch labile Übergangsmetall-Komplexe bilden [5] bzw. zur Spaltung von B—S-Bindungen neigen [6], lag es nahe, BS-Verbindungen mit einem B : S-Verhältnis > 1 Übergangsmetallcarbonyl-Fragmenten als Liganden zur Verfügung zu stellen.

Durch Umsetzung von 2,9-Dimethyl-benzo-1,2,5-thiadiborolen mit $Fe_2(CO)_9$ und $Fe_3(CO)_{12}$ konnten wir einen roten, sublimierbaren Tricarbonyleisen-Komplex erhalten, in dem der Thioboran-Ligand als 4-Elektronendonor fungiert, da auch zwei Elektronen des 6 π -Elektronensystems an der Komplexbindung beteiligt sind [6,7]. Die aus spektroskopischen Daten abgeleitete <u>pentahapto-Struk-</u> tur wurde von Krüger und Tsay [7] röntgenographisch bestätigt. Über 3,4-Diäthyl-2,5-dimethyl-1,2,5-thiadiborolen-Komplexe des Nickels haben wir kürzlich berichtet [8]. Im folgenden werden die Ligandeneigenschaften des 3,4-Diäthyl-1,2,5-thiadiborolens gegenüber dem $Fe(CO)_3$ -Fragment in Abhängigkeit vom borständigen Substituenten beschrieben und die Bindungsverhältnisse diskutiert.

Ergebnisse

Darstellung

Die Synthese der Thiadiborolen-tricarbonyleisen-Komplexe IIa-d gelingt durch gelindes Erwärmen der entsprechenden Thiadiborolen-Derivate mit $Fe_2(CO)_9$ in n-Hexan in 60-90% igen Ausbeuten (Gl. 1) [9]. Das Abklingen der heftigen CO-Entwicklung zeigt in der Regel bereits nach zehnminütigen Erhitzen des Reaktionsgefässes das Ende der Reaktion an.

(a) X = J; (b) X = Br; (c) X = Cl, (d) X = Me; (e) $X = NMe_2$; (f) X = OEt; (g) X = SMe

Dimethylthiadiborolen-tricarbonyleisen (IId) wurde auch durch mehrstündiges Rühren der Komponenten in THF erhalten. Die Synthese der Komplexe IIe-g erfordert höhere Reaktionstemperaturen.

Zur Darstellung von Thiadiborolen-tricarbonyleisen-Derivaten kann auch die Austauschbarkeit der Jodatome im komplexierten Dijodthiadiborolen-Liganden (IIa) genutzt werden. Während die Umsetzung von Ia mit Zinntetramethyl zu einem raschen Austausch der Jodatome gegen Methylgruppen führt, verhält sich IIa selbst unter drastischen Reaktionsbedingungen inert gegenüber $Sn(CH_3)_4$. Dagegen reagiert IIa mit stöchiometrischen Mengen Dimethylamin unter Bildung von IIe und Dimethylammonium-jodid (Gl. 2).

(e) $X = NMe_2$; (f) X = OEt; (g) X = SMe; (h) X = H

Die Umsetzung mit Diäthyläther führt zu IIf, während die Redoxreaktion mit Dimethyldisulfan selbst bei Anwesenheit von Hg nur ein Gemisch aus IIg und dem Liganden Ig ergibt, da IIg durch freigesetztes Jod (s. unten) zerstört wird.

Von besonderem präparativen Interesse sind Versuche, durch Substitutionsreaktionen an Thiadiborolen-Komplexen Derivate des Thiadiborolens zu erzeugen, deren Darst llung am freien Liganden nicht gelang. So führte die Reaktion von Ia (X = J) mit Lithiumboranat weder zur Freisetzung von Diboran, noch konnten definierte Produkte erhalten werden. Beim Zusammengeben von

IIa mit LiBH₄ setzt jedoch eine spontan ablaufende Reaktion Diboran frei. Durch Destillation wird 2,5-Dihydro-3,4-diäthyl-1,2,5-thiadiborolen-tricarbonyleisen IIh als gelbe, extrem luftempfindliche Flüssigkeit erhalten.

Versuche zur Darstellung des Difluor-Derivates aus IIa und AsF₃ im Molverhältnis 3 : 1, 3 : 2 und im Überschuss an AsF₃ ergeben das monofluorierte 2-Fluor-5-jod-1,2,5-thiadiborolen-tricarbonyleisen IIi. Wenn der Anteil des AsF₃ das stöchiometrische Verhältnis (3 : 1) übertrifft, wird neben IIi auch die Bildung von BF₃ als Zeichen der Zersetzung des Liganden beobachtet. Der difluorierte Komplex konnte nicht erhalten werden. Ebenso führt die 1 : 1-Umsetzung von IIa mit Äther zu IIj, während IIk aus 2-Jod-5-methyl-1,2,5-thiadiborolen und Fe₂(CO)₉ synthetisiert wurde.

(i) X = F; (j) X = OEt; (k) X = Me

Eigenschaften

Die Komplexe IIa-k sind destillierbare bzw. sublimierbare, orangerote bis dunkelrote Verbindungen (s. Tab. 1), die Unterschiede in der thermischen Stabilität aufweisen. Bei geringer Lewis-Acidität der BX-Gruppe im Liganden neigen sie besonders bei Lichteinwirkung zum Zerfall. Die Bis(ätnoxi)-Verbindung IIf verändert sich langsam bei Raumtemperatur, beim Schmelzen (45°C) ist Schwarzfärbung und oberhalb 90°C Gasentwicklung (CO) zu erkennen [10]. Unter diesen Bedingungen bleibt IIa unverändert.

Von Interesse ist die Stabilität der Bis(methylthio)-Verbindung IIg, die beim

TABELLE 1

(EtC) ₂ (B	$X)_2 S \cdot Fe(CO)_3$	Siedepunkt	Schmelzpunkt	Farbe
11	x		(0)	
a	J	90/0.01 ª	9698	orangerot
Ъ	Br	64-66/0.02	59-60	gelborange
c	C1	50/0.05		gelbrot
đ	Me	35/0.02	23-25	gelborange
÷	NMe ₂	90/0.01 4	101-102	dunkelrot
1	OEL	52/0.01	45-46	dunkeirot
¥	SMe	115/0.01 4	125-126	dunkelrot -
h	H	49/1	여기는 것은 것같은 우리는 것	relb
i	F.J.	42/9.02		selbrot
j	EtO, J	63-65/0.01		dunkelrot
iκ.	Me, J	80/0.02 0	68-70	rot

-4

Schmelzen (125–126°C) geringe Anzeichen von Zersetzung zeigt. Von einer Probe, die innerhalb einer Stunde von 130 auf 160°C erhitzt worden war, konnte 50% des eingesetzten IIg zurückerhalten werden. Dieses Ergebnis erscheint bemerkenswert im Zusammenhang mit negativ verlaufenen Versuchen zur Darstellung des 2,9-Bis(methylthio)benzo-1,2,5-thiaborolen-tricarbonyleisens bei 100– 120°C, die nur zu $[CH_3S-Fe(CO)_3]_2$ führten [6].

Wie oben beschrieben, lassen sich im Komplex IIa die Jodatome durch geeignete Agenzien substituieren. So führt die Umsetzung mit stöchiometrischen Mengen Dimethylamin nach Gl. 2 zu IIe. Setzt man Dimethylamin im Überschuss ein, dann erfolgt Zerstörung des Komplexes unter Entwicklung von CO, H_2S und Abscheidung von Eisen. Als Reaktionsprodukte werden neben nichtflüchtigen Anteilen in geringer Menge ein Gemisch aus Bis(dimethylamino)-thiadiborolen (Ie) und einer Substanz mit substituiertem Brückenschwefelatom, wahrscheinlich *cis*-3,4-Bis[bis(dimethylamino)boryl]hexen-3 erhalten.

Bei der Umsetzung von Ha mit Dimethyldisulfan nach Gl. 2 muss das freigesetzte Jod abgefangen werden, da der Komplex Hg von Jod (Gl. 4) oxidativ abgebaut wird. Im Gegensatz dazu wird Ha durch Jod auch bei mehrstündigen Erhitzen nur langsam angegriffen.

Der gelbe Dihydro-Komplex IIh zeigt gegen Sauerstoff eine ausgeprägte Empfindlichkeit: es tritt an Luft augenblicklich Schwarzfärbung ein. Im Vergleich dazu kann die Dimethyl-Verbindung IId, die als einzige der Komplexe IIa---k auch gegenüber Hydrolyse stabil ist, längere Zeit an Luft gehandhabt werden.

Spektroskopische Untersuchungen

¹H-NMR. Die Protonenresonanzspektren der Thiadiborolen-tricarbonyleisen-Komplexe weisen neben den typischen Änderungen in den chemischen Verschiebungen (s. Tab. 2) einen weiteren charakteristischen Unterschied zu den Spektren der freien Liganden auf. Anstelle des reinen Quartetts für die Methylen-Protonen der 3,4-Diäthyl-thiadiborolene erscheint eine mehr oder weniger komplexe Multiplettstruktur.

Aus dem Molekülmodell geht hervor, dass sich die beiden Methylen-Protonen H_a und H_b einer Äthylgruppe im Komplex durch Symmetrieoperationen nicht zur Deckung bringen lassen, da die benachbarten Ring-Kohlenstoffatome infolge Ausbildung von Fe-C-Bindungen asymmetrische Zentren darstellen. Die magnetisch nicht mehr äquivalenten Protonen H_a und H_b bilden durch Kopplung untereinander sowie mit den äquivalenten Methyl-Protonen ein Spin-System höherer Ordnung vom ABX_3 -Typ.

Das Erscheinungsbild des vorliegenden AB-Systems, das vom Verhältnis der Kopplungskonstante (J) zwischen H_a und H_b und den relativen chemischen Verschiebungen zwischen beiden Kernen ($\nu_0\delta$) bestimmt wird, lässt sich bei kleinen $J/\nu_0\delta$ -Quotienten in einfacher Näherung nach den Regeln erster Ordnung analysieren. Die erhaltenen 16 Linien gestatten es, aus der Bestimmung der Zentren

t

II(I)	x	δ(C—CH3) °	δ(CCH2) d	δ(BX)	δ(^{1 1} B)	$\Delta\delta(^{11}B)$
a	J	1.28(1.12)	2,3(2.51)	· · ·	13,2(66.0) e	52.8
ъ	Br	1.27(1.07)	2,3(2.46)		23.5(65.4)	41.9
с	Cl	1.26(1.04)	2.3(2.39)		26.5(66.4)	39.9
d	Me b	1.12(0.96)	2.0(2.24)	0.94(1.03)	27.8(66.0)	38.2
e	NMe ₂	1.24(0.99)	2.3(2.40)	2.79(3.02)	26.7(42.0)	15.3
f	OEt	1.14(0.88)	2.1(2.16)	3.76(4.16, Q) 1.22(1.26, T)	27.3(47.6)	20.3
g	SMe	1.22(1.04)	2,2(2.30)	2.12(2.46)	32.0(65.8)	33.8
ь	н	1.24 2	2.1	4.16	16.1 ^f	
i	F, J	1.23; 1.29 #	2,2		29.6; 7.6	
j	EtO, J	1.16; 1.20 #	2.2	3.78(Q)	31.1; 8.0	÷
		•	•	1.24(T)		
k	Me, J	1.28(1.25)	2.3(2.64)	0.96(1.28)	29.7(70.5) h	·
		1.16(1.05)	(2.40)		11.9(47.1)	
					(12.5)	

^{a 1}H-NMR (δ ppm) in CDCl₃ gegen TMS, ¹¹B-NMR (δ, ppm) in CCl₄ gegen BF₃ · OEt₂ ext., positive δ-Werte geben Tieffeldverschiebungen rel. zum Standard an; δ-Werte der Liganden in Klammern. ^b In C₆D₆. ^c Triplett. ^d Multiplett (Quartett). ^e In C₇H₈ bei 90°C. ^f Dublett, J 150 Hz. ^g Freier Ligand nicht stabil. ^h In C₇D₈.

von vier sich überlagernden Quartetts die Lage der vier AB-Linien und somit J und $\nu_0 \delta$ zu ermitteln.

Wie Fig. 1 zeigt, lässt sich das Multiplett der Methylen-Protonen von IIb in vier deutlich unterscheidbare Quartetts (J 7.8 Hz) separieren. Der Abstand der Linien liefert im vorliegenden Beispiel eine Kopplungskonstante von 13.4 Hz für die Protonen H_a und H_b. Die relative chemische Verschiebung im *AB*-System wird zu $\nu_0 \delta$ 33.8 Hz berechnet. Daraus ergibt sich ein $J/\nu_0 \delta$ -Verhältnis von ungefähr 1 : 2.5.

Wie aus Tab. 3 hervorgeht, bleibt die Kopplungskonstante in allen Thiadi-

TABELLE 2

TABELLE 3	Ì
-----------	---

	x	· · · ·	,,, ,, ,,, ,_, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,		•	
	J	Br	Cl	CH3		
J	13.1	13.4	12.9	12.8		
roδ	31.7	33.8	31.4	18.4		

KOPPLUNGSKONSTANTEN UND $\nu_0\delta$ -werte der methylen-protonen H_a und H_b IN (C₂H₅)₂C₂(BX)₂S · Fe(CO)₃ ^a

^a Angaben in Hz.

borolen-tricarbonyleisen-Komplexen nahezu konstant. Sie beträgt ca. 13 Hz. Unterschiedliche Werte ergeben sich jedoch für die Differenzen der chemischen Verschiebungen von H_a und H_b bei wechselnden Substituenten am Thiadiborolen-Liganden. Während innerhalb der Reihe der Halogen-Derivate nur geringe Abweichungen festzustellen sind, wird $\nu_0 \delta$ beim Übergang zur Methylverbindung stark erniedrigt. Den kleinsten $\nu_0 \delta$ -Wert liefert der Dihydro-thiadiborolen-tricarbonyleisen-Komplex IIh, dessen Resonanzlinien für die Methylen-Protonen aufgrund eines grossen $J/\nu_0 \delta$ -Quotienten nicht mehr in der obigen Weise analysiert werden können (s. Fig. 1).

Für die unterschiedlichen chemischen Verschiebungen von H_a und H_b sollten im wesentlichen zwei Effekte verantwortlich sein. Wie aus den erhaltenen Daten klar hervorgeht (Tab. 3), werden die differierenden $\nu_0 \delta$ -Werte durch die Änderung der Substituenten am Bor hervorgerufen. Es muss angenommen werden, dass der Einfluss des B-Substituenten selbst, wahrscheinlich durch seinen jeweiligen Anisotropie-Effekt, die chemische Verschiebung beeinflusst. Andererseits finden auch in Abhängigkeit vom B-Substituenten unterschiedliche elektronische Wechselwirkungen zwischen dem Thiadiborolen-Ring und dem Eisenatom statt, die zu einer unterschiedlichen Beeinflussung der Abschirmung der Methylen-Protonen beitragen sollten.

Im ¹H-NMR-Spektrum von IIh wird das erwartete 1:1:1:1-Quartett für B-H (¹B, I = 3/2) nicht gefunden. Bei Bor-Entkopplung tritt es als breites Singulett bei 4.10 ppm auf.

Die chemische Verschiebung der Methyl-Protonen der Äthylgruppen zeigt eine Tieffeld-Verschiebung um durchschnittlich 0.20 ppm für die Komplexe im Vergleich zu den entsprechenden freien Thiadiborolen-Derivaten. Darin erkennt man den verstärkten induktiven Effekt der Äthylgruppen als Folge der Entschirmung der olefinischen C-Atome durch die Beteiligung des π -Elektronenpaares an der Metall-Kohlenstoff-Bindung. In Übereinstimmung damit weisen die ¹³C-Resonanzen der Äthyl-Kohlenstoffatome im Dimethylthiadiborolen eine Verschiebung des CH₃-C-Signals um 2 ppm nach tieferem Feld beim Übergang zu dem entsprechenden Eisen-Komplex auf. Die Carbonyl-C-Atome ergeben ein Signal bei 210.4 ppm. Die Erhöhung der Elektronendichte an den Boratomen durch die Komplexierung zeigt sich in der Hochfeldverschiebung der B-CH₃und der B-N(CH₃)₂-Protonen.

Auf der Grundlage von ¹H-NMR-Tieftemperaturexperimenten lässt sich in IIe die Energiebarriere der Rotation um die B—N-Bindung zu 10.3 kcal mol⁻¹ bestimmen. ¹¹B-NMR. Einen eindrucksvollen Beweis für die Wechselwirkungen der Boratome mit Metall-d-Elektronen erbringen die starken Hochfeldverschiebungen der ¹¹B-Kernresonanzsignale. Dabei werden nahezu Werte erreicht, wie sie für vierbindige Bor-Verbindungen auftreten. Eine Umhybridisierung nach sp^3 ist jedoch aufgrund der Kristallstrukturanalysen des Benzo-thiadiborolen-tricarbonyleisens auszuschliessen [7]. Da neben der Polarität, die aus dem σ -Bindungsanteil resultiert, und Nachbargruppeneffekten vor allem Änderungen im π -Bindungsbereich die magnetische Abschirmung der ¹¹B-Kerne entscheidend beeinflussen [11], reflektiert der hohe Abschirmungsgewinn der Boratome in den Komplexen starke π -Wechselwirkungen.

Nimmt man die Differenz der ¹¹B-chemischen Verschiebungen zwischen den Komplexen und den entsprechenden freien Thiadiborolen-Liganden ($\Delta\delta(^{11}B)$ in Tab. 2) in einfacher Näherung als Mass für die Akzeptorstärke der Boratome, so ergibt sich eine direkte Abhängigkeit zwischen $\Delta \delta(^{11}B)$ und der Lewis-Acidität der jeweiligen Boryl-Gruppe: mit zunehmender Lewis-Acidität steigt das Akzeptorvermögen der Boratome gegenüber Metallelektronen. Die Zunahme der Lewis-Acidität und von $\Delta\delta(^{11}B)$ entspricht folgender Reihe der Bor-Substituenten:

 $N(CH_3)_2 < OC_2H_5 < SCH_3 < CH_3 < Cl < Br < J$

Die ¹¹B-Resonanz des Dihydrothiadiborolen-tricarbonyleisens (IIh) erscheint erwartungsgemäss als Dublett mit einer Kopplungskonstante von 150 Hz. IIi—k zeigen entsprechend der unsymmetrischen Substitution zwei ¹¹B-Kernresonanzsignale. Aufgrund der Erfahrungswerte von BJ- und BF-Verbindungen sowie anhand der Signalbreite in IIi, die durch Kopplung mit dem ¹⁹F-Kern beeinflusst wird, muss das Signal bei höherem Feld dem Jod-substituierten B-Atom zugeordnet werden. Dieses ist gegenüber dem Dijodthiadiborolen-Komplex um ≈ 5 ppm hochfeldverschoben. Die Zuordnung in IIj und IIk erfolgte analog zu IIi. Das ¹⁹F-Resonanzsignal von IIi findet sich bei 149.5 ppm. Dieser Wert ist weniger charakteristisch für dreifach- als für vierfach-koordinierte Fluor-Borane. Ähnliche chemische Verschiebungen werden auch von Timms [12] für die Fluorboran-Komplexe (C₄Me₄B₂F₂)₂Ni mit 142.7 ppm und (C₄Me₄B₂F₂)Ni(CO)₂ mit 144.8 ppm gefunden. Sie werden als Indiz für eine hohe Elektronendichte an den Bor- und Fluoratomen gewertet.

Infrarotspektren: Im Bereich der CO-Valenzschwingungen zeigen die Thiadiborolen-tricarbonyleisen-Komplexe, mit Ausnahme des Amino-Derivates, drei Banden, die in C_2Cl_4 -Lösung beobachtet werden. Dies legt nahe, dass in den Komplexen die Entartung der *E*-Schwingung aufgehoben ist.

Damit wäre eine Störung der lokalen C_{3v} -Symmetrie mit Übergang nach C_s -Symmetrie angezeigt, für die weniger der Einfluss der C_{2v} -Symmetrie des Liganden auf die Gesamtsymmetrie des Moleküls, als vielmehr elektronische Faktoren im Thiadiborolen-Ring mit seinen unterschiedlichen Donor- und Akzeptor-Positionen verantwortlich gemacht werden sollten. Tabelle 4 zeigt die beträchtliche Auswirkung der B-Substituenten auf die Lage der CO-Banden, die einen Bereich von ca. 40 Wellenzahlen für die A₁-Schwingung umfasst.

Nimmt man in Anlehnung an Aromatenkomplexe [13] vor allem die Position der symmetrischen A_1 -Schwingung als ein Mass für den Elektronendonorcharak-

11	x	ν(CO)	v(C=C)	
•	NMan	2034 1966		
1	OEt	2048, 1981-1978		
2	SCH ₃	2056, 2000, 1998		
d	Me	2058, 2000, 1993	1470(1535) ^b	
j	EtO, J	2063, 2007, 1997		
a	J	2066, 2013, 2000	1470(1536)	
h	н	2067, 2013, 2001		
i	F.J	2073, 2022, 2007	1466	
с	Cl	2074, 2024, 2009	1465(1557)	
Ъ	Br	2075, 2027, 2012	1467(1548)	

TABELLE 4 INFRAROT-DATEN (ν (CO) UND (C=C)) ^a DER KOMPLEXE IIa-k

 $a \text{ cm}^{-1}$, in C₂Cl₄. $b \nu$ (C=C) der Liganden.

ter der Nicht-CO-Liganden, so ergibt sich ein Zusammenhang zwischen der Natur des Bor-Substituenten und der Donor-Stärke des Thiadiborolens. Sieht man zunächst vom Wasserstoff-Derivat IIh und den Halogen-Verbindungen ab, so erkennt man, das mit zunehmendem induktivem bzw. mesomerem Einfluss des B-Substituenten in Übereinstimmung mit der abnehmenden Lewis-Acidität der jeweiligen Boryl-Gruppe der Donorcharakter des Liganden erhöht wird.

Bei den Halogen-Derivaten zeigt sich, dass neben der Lewis-Acidität vor allem die Elektronegativität des Halogenatoms die Lage der A_1 -Bande beeinflusst und teilweise zur Überlagerung beider Effekte führt. Die Erkenntnis, dass der Donorcharakter des Thiadiborolen-Liganden mit abnehmender Elektronegativität des Bor-Halogen-Substituenten steigt, wird durch folgende Befunde belegt: (a) Das Jod- und das H-Derivat besitzen bei fast gleichen Elektronegativitäts-Werten nahezu identische CO-Frequenzen.

(b) Der Austausch eines Jodatoms im Dijodthiadiborolen-Komplex gegen ein elektronegativeres Fluoratom führt zu einem Anstieg von $\nu(CO)$ um 7 Wellenzahlen.

Bemerkenswert erscheint auch die Tatsache, dass die Amino-Verbindung keine Aufspaltung der längerwelligen CO-Bande zeigt. Offensichtlich bleibt in diesem Falle die ansonsten registrierte Störung der lokalen C_{3v} -Symmetrie der Fe(CO)₃-Gruppe aus. Dies bedeutet, dass die Symmetrieerniedrigung von der Borylgruppe ausgelöst wird, wobei die Störung offenbar mit der Lewis-Acidität zunimmt.

Die Funktion der Doppelbindung als π -Donator wird durch die Emiedrigung von $\nu(C=C)$ um bis 90 cm⁻¹ in den Tricarbonyleisen-Komplexen deutlich. Die symmetrische C=C-Streckschwingung des 1,4-Diborin-Systems wird durch Koordination an eine Fe(CO)₃-Gruppe um ca. 100 cm⁻¹ nach kleineren Wellenzahlen verschoben und liegt mit 1474 cm⁻¹ im $\nu(C=C)$ -Bereich der Thiadiborolen-Komplexe [12]. Ohne wesentlichen Einfluss bleibt die Komplexierung auf die CH-Valenzschwingungen und die BX-Streckschwingungen (X = νxo -cycl. B-Substituent) des Thiadiborolens. Das IR-Spektrum des Dihydrothiadiborolen-tricarbonyleisens enthält als charakteristische, sehr starke Bande eine Absorption bei 2564 cm⁻¹, die in Übereinstimmung mit den Schwingungsspektren von Carboran-Übergangsmetall-Komplexen, beispielsweise (π -C₂B₃H₇)Fe(CO)₃ (2569 cm⁻¹)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J. Br Cl M (1a) (1b) (1c) $(1a)$ (1a) (1b) (1c) $(1a)$ (530 438 346 $(1a)$ (530 438 346 $(1a)$ (1a) (1a) (1b) $(1a)$ (530 438 346 $(1a)$ (532 (11) (6) $(1a)$ (1a) (1a) (1a) $(1a)$ (100) (100) (89) (100) $(1a)$ (100) (89) (100) (10) $(1a)$ (10) (10) (10) (10) $(1a)$ (10) (10) (10) (10) $(1a)$ (10) (10) (10) (10) (2) (13) (20) 23 (10) $(1a)$ (13) (11) (10) (11) $(1a)$ (11) (10) (11) (11) $(1a)$ (11) (11) (11) (11) $(1a)$ (11) (11)	Me Nh (11d) (111 (11d) (111 (5) (6) (6) (5) (11 (5) (11 (5) (11 (11) (11) (11) (11) (11) (11) (12) (11) (13) (13) (13) (13) (13) (13)	Me2 081 e) (115) 4 386 4 386 6 (110) 8 110) 8 110) 2 82 0 282 0 (100) (100)	SMe (114) 370 314 (1) 314 (10) (10)	H (11h) 278 250 (13) 2250 (13) 2250 (13) 2250 (13) (13) (13) (13) (13) (13) (13) (13)	H (11h) a (100) (100) (100) (100) (12) (12) (12) (13) (15)	F. J (III) (11) (75) 394 (81) 386 (88) 338 338 (100)	OEt, J (11) 448 (2)	Me, J (11k)		
		N ⁴ 530 438 346 $[M - 2c0]^{1}$ 50.2 410 318 $[M - 2c0]^{1}$ 50.2 410 318 $[M - 3c0]^{1}$ 50.2 410 318 $[M - 3c0]^{1}$ 446 354 262 $[M - 3c0 - x]^{1}$ 446 354 262 $[M - 3c0 - c_2H_4]^{1}$ 1000 (89) (100) $[M - 3c0 - c_2H_4]^{1}$ 319 269 (10) $[M - 3c0 - c_2H_4]^{1}$ 319 82 36 $[M - 3c0 - c_2H_4]^{1}$ 128 82 36 $[M - 3c0 - c_2H_4]^{1}$ 319 (10) (14) $[M - 3c0 - c_2H_4]^{1}$ 319 (14) (14) $[M - 3c0 - c_2H_4]^{1}$ 319 (14) (14) $[M - 3c0 - c_2H_4]^{1}$ 310 (16) (16) $[M - 3c0 - c_2H_4]^{1}$ 312 27 (20) $[M - 3c0 - 1]^{1}$ 21 27 (20) $[M - 360 (M_1 - 58)^{1} - 100)^{138} (00)^{138} (0_{1} - 30)^{1} - 30)^{1} (00)^{138} (0_{2}$	366 366 278 278 33 (5) (5) (10) (10) (10) (10) (10) (10) (10) (10	4 4 4 8 23 10 28 310 28 310 100 28 0 9 100 28	370 (1) 342 314 (1) (19)	278 278 260 284 (11) 222 222 (10) 188 (98) (98)	278 (100) 2500) 222 222 194 123) 166 233) 166 233) 166 150 150 150 150 150 150 150 150 150 150	422 (75) (75) 394 (81) 366 (88) 338 (98) 338 (100)	448 (2)			
		$ \begin{bmatrix} (4) & (17) & (17) & (17) & (17) & (17) & (17) & (17) & (10) & (11) & (10) & (11) & (10) & (11) & (12) $	(5) 278 (5) (5) (11) 220 (30) (10) (10) (10) (10) (10) (10) (10) (1	(10) (100) (100) (100) (100)	(1) 342 314 (19) (19) (19)	(13) 250 (11) 222 (11) 222 (11) (12) (13) (13) (13) (13) (13) (13) (13) (13	(100) 250 222 194 194 (12) 166 (15)	(75) 394 (81) 386 (88) 338 (100)	430 730	418		
		$ \begin{bmatrix} \mathbf{u} - CO ^{*} & 502 & 410 & 318 \\ \mathbf{u} - 2CO ^{*} & 223 & (11) & (6) \\ \mathbf{u} - 3CO ^{*} & 418 & 382 & 260 \\ \mathbf{u} - 3CO ^{*} & 446 & 354 & 262 \\ \mathbf{u} - 3CO - X ^{*} & 1000 & (89) & (100) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (100) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (10) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (10) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - C_{2} _{4} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - 21 ^{*} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - 21 ^{*} \end{bmatrix}^{*} & 319 & (20) \\ \mathbf{u} - 3CO - 21 ^{*} \end{bmatrix}^{*} & 1000 \\ \mathbf{u} - 3CO - 31 ^{*} \end{bmatrix}^{*} & 1000 \\ \mathbf{u} - 3CO - 31 ^{*} \end{bmatrix}^{*} & 1000 \\ \mathbf{u} $	278 (5) (1) (36) (36) (36) (36) (36) (10) (10) (10) (33) (33) (33)	6 338 2) (13) 6 9 8 10 2 8 2 10 2 8 2 10 100 100	342 (2) (8) (10) (10)	260 (11) 222 (100) 184 (93) (97)	250 (40) 194 (12) 166 (23) 166 (15)	394 (81) 386 (98) 338 (100)	400	(61)		-
			(b) 250 (35) (35) (35) (35) (10) (10) (10) (10) (10) (10) (10) (10	2) (13) 8 310 9 (99) 282 (100)	(2) 314 (8) 286 (10)	(11) 222 194 (98) (98) (97)	(40) 222 194 166 166 150 166	(81) 386 (98) 338 (100)	742	390		•
$ \begin{bmatrix} M - 1007 & 414 & 382 & 280 & 260 & 308 & 310 & 314 & 222 & 222 & 366 & 392 & 362 \\ M - 3007 & 468 & 564 & 262 & 289 & 990 & (99) & (19) & (19) & (12) & (09) & (11) & (10) \\ 41 - 300 - 416 & 510 & (100) & (100) & (100) & (10) & (10) & (10) & (10) & (10) & 207 \\ 207 & (100) & (10) & (100) & (10) & (100) & (10) & (10) & (10) & (10) & 207 \\ 207 & (10) & (10) & (11) & 134 & 252 & 254 & 1166 & 116 & 116 & 110 \\ 207 & (10) & (11) & 138 & 82 & 36 & 310 & (41) & (41) \\ 207 & (10) & (11) & (10) & (11) & (11) & (12) & (12) & (12) & (12) \\ 207 & (10) & (10) & (10) & (11) & 0 & (10) & (10) & (10) & (11) & (11) & 123 & 128 \\ 207 & (10) & (10) & (10) & (11) & (23) & (10) & (10) & (11) & 123 & 128 \\ 207 & 218 & 28 & 28 & (10) & (10) & (10) & (10) & (12) & (12) & (12) & (12) \\ 207 & 218 & 28 & 28 & (10) & (10) & (23) & (23) & (21) & (23) & (21) & (23) & (24) & (23) & (24) & (23) & (23) & (24) & (23) & (24) & (23) & (23) & (24) & (2$			250 (36) (223 (223 (233) (10) (10) (10) (10) (10) (10) (10) (10	8 310 9) (99) 0 282 0) (100)	314 (8) (19)	222 (100) 184 (98) 166 (97)	222 (12) 194 (23) 166 (15)	386 (98) 338 (100)	€	(25)		
		$ \begin{bmatrix} (47) & (40) & (74) & (46) \\ (47 - 3 CO f) & (46) & 354 & 262 \\ (47 - 3 CO - x f) & (100) & (89) & (100) \\ (47 - 3 CO - C_2 4_f) & (10) & (89) & (10) \\ (47 - 3 CO - C_2 4_f) & (10) & (89) & (14) \\ (47 - 3 CO - C_2 4_f) & (10) & (69) & (14) \\ (47 - 3 CO - C_2 4_f) & (10) & (20) & 56 \\ (5 - 2 H_2) & (21) & (21) & 56 \\ (5 - 2 H_2) & (21) & (24) & (21) \\ (13) & (20) & (24H_2 D_2 S', 21) \\ (14) & (23H_2 D_2 B', 21) \\ (14) & (23H_2 D_2 B'$	(36) 222 28 28 (74) (10 (10 (33) (8) (33) (8)	9) (99) (99) (100) (100)	(8) 286 (19)	(100) 194 (98) (98) 166 (97)	(12) 194 (23) 166 (15)	(98) 338 (100)	392	362		
			222 28 (74) (10 194 25 (33) (8	0) 282 (100)	286 (19)	194 (98) 166 (97)	194 (23) 166 (15)	338 (100)	(10)	(62)		i i
			(74) 194 (33) (8) (8)	() (100)	(16)	(98) 166 (97)	(23) 166 (15)	(100)	364	334		
		(M ⁻³ CO - X ² , 319 (M ⁻³ CO - C ₂ H ₄) (10) (M ⁻³ CO - C ₂ H ₄) (20) (M ⁻³ CO - C ₂ H ₄) (20) (2) (2) (2) (2) (2) (3) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	194 (33) (33)			166 (97)	166 (15)		(18)	(100)		
$ \begin{bmatrix} w - 3CO - C_2 H_2^{-1} & (10) & $		[w-3c0-c2H4]* (10) IIX 128 IIX (10) X (10) X (10) X (10) X (10) X (20) X 56 60 56 (5) 28 (2) 28 (2) 28 (2) 28 (2) 28 (2) 28 (2) 28 (2) 28 (2) 28 (3) (20) (4) (77) (3) (20) (13) (20) Weiterer Fraumente treton auf bei: (13) (20) (14) (34) (13) (20) (13) (20) (14) (34) (15) 100):136 (0,6H1,0B) (16) 214 (16) 214 (16) 214	194 (33) (8)			166 (97)	166 (15)		-	207		
$ \begin{bmatrix} W = 3CO - C_2 H_a^{-1} \\ (10) (55) (14) \\ W = 128 \\$		(w = 3 C0 - C ₂ H ₄ / HX [*] 128 82 36 X [*] (10) (59) (14) X [*] (20) (59) (14) (20) (50) (20) (50 C0 [*] 56 (5) (20) (50 C0 [*] 28 (20) (50 C2 H ₄ (10) (17) (94) C2 H ₃ (10) (17) (94) (20) Weitary Fragmente treton aif bei (13) (20) (21 + 7 + 100) (24 + 100). Hb 380 (C1 + 5 H + 100) (24 + 100). Hb 380 (C1 + 5 H + 100) (24 + 100). Hb 380 (C1 + 5 H + 100) (24 + 100).	194 (33) (8) (8)			166 (97)	166 (15)			(40)		
HX ² 128 129 (10) (59) (14) (13) (10) (15) (10) (11) (17) (18) (10) (10) (10) (10) (10) (10) (10) (10	IX 128 133 (97) (10) 128 128 X (10) (13) (14) (13) (14) (17) (19) (10) 128	HX [*] [128 82 86 X [*] (10) [69] (14) X [*] (10) [69] (14) 80 (20) (20) (6) (20) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(33)	2 254	•	(67)	(31)	310		•		-
HX ⁴ 128 82 36 128 128 128 128 128 128 128 128 128 128	IIX*128823647128128128X*(10)(69)(14)47(10)(6)(17)(6)X*8686868686868686(10)(10)(10)(11)(10)(10)(11)(10)(11)(10)(11)(20)865656565656(11)(11)(21)(10)(11)(32)(33)(6)(19)(21)(11)(23)(10)(11)(32)(33)(6)(19)(21)(21)(21)(10)(10)(13)(21)(32)(23)(31)(11)(24)(10)(10)(13)(13)(75)(6)(11)(13)(21)(20)(20)(20)(20)(32)(21)(13)(21)(20)(20)(20)(20)(32)(21)(13)(21)(20)(20)(20)(20)(21)(21)(13)(21)(20)(20)(20)(21)(21)(21)(13)(21)(20)(20)(20)(20)(21)(21)(13)(20)(21)(21)(20)(21)(21)(21)(13)(21)(21)(21)(21)(21)(21)(21)(13)(21)(21)(21)(21)(21)(21)(21)(13)(21)(21)(HX ² 128 82 36 X ² (10) (59) (14) X ² (20) (59) (14) 8e ⁴ 56 (20) 66 (0) (20) 58 (20) 66 (0) (10) (20) (0) 213 (20) 28 (2) 13 (20) 214 (10) (13) (20) Wellerr Fragmente Irelen auf bel (13) (20) (11) 24 (0, 1, 00) 244 (10) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11) 244 (10) 136 (0, 11)		(33)				(01)				
X' (10)(69)(14) 47 7 (7) (8) R^{*} $B1$ (20) $B1$ (21) (22) $B1$ (21) (21) (22) (22) (22) (23) (23) (39) (67) (4) (4) (5) R^{*} 65 66 56	X (10) (69) (14) 47 (7) (8) X 81 (10) (10) (10) (10) (10) (10) Fe 66 (6 (10) (11) (10) (11) (10) CO 28 56 56 56 56 56 58 58 CoL 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 27 (10) (11) 27 20 <	X [*] (10) (59) . (14) K [*] (20) 81 (20) 81 (20) 66 (3) (20) 66 (4) (3) (3) (20) (2) 13 (3) (20) Vettare Fragmente Ireten aul bel: (13) (20) (13) (20) 100) 264 (19 ⁻³ 5 ⁰ , 2) (14) 100) 264 (10 ⁻³ 5 ⁰ , 2) (15) 100) 264 (10 ⁻³ 5 ⁰ , 2) (15) 100) 264 (10 ⁻³ 5 ⁰ , 2) (15) 100) 264 (10 ⁻³ 5 ⁰ , 2) (16) 100) 264 (10 ⁻³ 5 ⁰ , 2) (17) 100) 264 (10 ⁻³ 5 ⁰ , 2) (18) 100 264 (10 ⁻³ 5 ¹ , 2) (18) 100 266 (10 ⁻				-			128	128		
XBI47127127127K*B5B6B6B6B6B6B6K*B5B6B6B6B6B6B6C0110110111122127127C0228282828282828C0327272728282828C042727133(100)133(75)(8)(19)C142727(100)282828282828C15(13)(20)20(100)(13)(75)(8)(32)Velorer Fragmente tertera at faci27(10)(13)(75)(8)(32)T11280(44/5, 70)43<(C3H7, 100)24(100)24(100)T11280(M = 3C0 - 21H), 100)24(100)250(M - 3C0 - C7H), 130)43<(C3H7, 90)41<(C3H5', 93)T11286(M - 21H), 631200211<(100)250<(100)250<(100)250<(100)260T11280281283283283283283283283T11286700281700282283700283700T11281783700283700283700700700T11281783700283700283700700700T11	XB147127127127Fe(20)16656566100137127127Fe(6)(10)(11)(10)565656565656CO282828282828282828CO282828282828282828CO21(71)(94)(100)21(23)(39)(87)(6)(19)Cyll27272727(30)(31)(32)(31)(32)Cyll27(13)(20)(100)2828282828Cyll2727(10)27(10)27(10)(32)Cyll20021(100)260(100)260(13)(32)Cyll2720)21(100)260(100)27(10)Cyll28280281(100)280(100)281(100)In 380(14)360260214(100)200(11)(23)(23)In 380(14)360(14)260216(10)(10)(11)(11)In 380(14)360(14)360(14)(10)(11)(11)(11)In 380(14)360(14)360(14)(10)(20)(11)(21)In 266 <td>X 81 80 80 80 80 80 80 80 80 80 80</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>(8)</td> <td></td> <td>• .</td>	X 81 80 80 80 80 80 80 80 80 80 80							6	(8)		• .
\mathbf{F}^{\bullet} \mathbf{E} (20) (12) (12) (10) (10) (12) (12) (10) (12) </td <td>$R^{4}$$(20)$$(20)$$(100)$$56$</td> <td>Fa* 66 63 66 65 CO* (6) (10) 65 65 CO* (5) (5) (10) CO* 28 28 (10) CO* 28 28 (10) CO* 28 28 (20) CO* 27 27 27 CO* 27 27 27 CO* 27 27 27 CO* 27 27 20 Medierre Fragmente tretten auf hei: (13) (20) Ita: 86 (Co-He Fragmente tretten auf hei: 100): 136 (GeH1, DE-S*, 20 Ita: 286 (Hu - 3 GC) - 24H (M - 3 GC) - 24H (Hu - 3 GC) - 24H (M - 3 GC) 244 (M - 3 GC)</td> <td></td> <td></td> <td>47</td> <td></td> <td>•</td> <td></td> <td>127</td> <td>127</td> <td></td> <td></td>	R^{4} (20) (20) (100) 56	Fa* 66 63 66 65 CO* (6) (10) 65 65 CO* (5) (5) (10) CO* 28 28 (10) CO* 28 28 (10) CO* 28 28 (20) CO* 27 27 27 CO* 27 27 27 CO* 27 27 27 CO* 27 27 20 Medierre Fragmente tretten auf hei: (13) (20) Ita: 86 (Co-He Fragmente tretten auf hei: 100): 136 (GeH1, DE-S*, 20 Ita: 286 (Hu - 3 GC) - 24H (M - 3 GC) - 24H (Hu - 3 GC) - 24H (M - 3 GC) 244 (M - 3 GC)			47		•		127	127		
No. 56 5	No. 56 57 53 53 53 53 53 56 57 53 53 53 53 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 5	Fe 56 56 56 56 56 56 56 50 (10) (20) (20) (20) (20) (20) (20) (20) (21) (21) (22) (21) (22) (21) (22) (21) (22) (21) (22) (21)			(100)		•		£	(4)		
CO ⁽¹⁾ (6) (10) (11) (32) (32) (39) (87) (6) (19) (52/4, 1) (32) (39) (87) (6) (19) (52/4, 1) (77) (94) (100) (100) (13) (75) (8) (32) (27) (29) (13) (75) (8) (32) (27) (29) (20) (20) (20) (20) (20) (20) (20) (20	CO ⁽¹⁾ (6) (10) (11) (32) (32) (37) (6) (19) C ₂ (4, 1) (7) (9, (10) (11) 28 28 28 28 28 28 28 28 28 28 28 28 28	(10) (C0 ⁺ (C2 _{H4} ⁺) (C2 _{H4} ⁺) (T7) (2) (T7) (24) (T7) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (21) (21) (20) (21	8			8	8	5	8	28		•
COV 28 28 28 28 28 28 28 28 28 28 28 28 28	CO 28 28 28 28 28 28 28 28 28 28 28 28 28	CON 28 28 C2H4 ¹) (94) C2H3 27 27 C2H3 (13) (20) Wellers Fragmente treten auf hei: Wellers Fragmente treten auf hei: IIIa: 85 (C2H2Fei, C4H5S [*] , 70); 43 (C3H7 ⁺ , 100). IIIa: 85 (C2H2Fei, C4H5S [*] , 70); 136 (C6H1 ₀ DES [*]), 2 IIIa: 27H (1M - 3 CC - 2 H ⁺) 100) 264 (1M - 3 CS + 2 H ⁺) 100).	(11)			(32)	(30)	(87)	8	(10)		
(C ₂ H ₄) (77) (94) (100) (100) (13) (75) (8) (32) (2) C ₂ H ₃ 27 27 (13) (20) (20) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C2H4 ¹) (77) (94) C2H3 27 27 Wellers Fragmente treben auf bel: Wellers Fragmente treben auf bel: IIa: 86 (C2H4,Fe ¹ , 04H5, 70); 43 (C3H7 ⁴ , 100). IIb: 380 (G1H2 ⁵) Br, 700; 136 (C ₆ H1 ₀ D25 ⁶), 20 IIb: 27R (1M - 3 CO - 2 H ³) 100) 264 (1M - 3 C ⁴)	38	•		28		28	28	28		
CyH3 27 27 27 27 27 (10) Weltare Frazmente ircten auf bei Meltare Frazmente ircten auf bei Ma: 86 (CyHyFe'i GyHyS, '70); 43 (CyHy ⁺ , 100). Ma: 860 (Mu ⁻⁵) Br. ⁷ /9 Br. 100); 136 (GyHyByS ⁺ , 17); 57 (GyHy ⁺ , 20); 55 (G ₄ Hy ⁺ , 73); 43 (G ₃ Hy ⁺ , 90); 41 (G ₃ Hy ⁺ , 93). Ma: 276 (Mu ⁻² Br. ⁷ /9 Br. 100); 264 (Mu ⁻³ SCO - CH ₄) [*] , 100), 250 (Mu ⁻³ SCO - C ₃ H ₆) [*] , 10). Mit ⁻² 265 (Mu ⁻² Br) [*] , 100); 264 (Mu ⁻³ SCO - CH ₄) [*] , 100), 250 (G ₆ H ₁ 0 [*] , 5). Mit ⁻² 276 (Mu ⁻² Br) [*] , 253); 221 (Mu ⁻² SCO - H) [*] , 12); 126 (G ₆ H ₁ 0 [*] , 5). Mit ⁻² 276 (Mu ⁻² Br) [*] , 231 (Mu ⁻² CO - H) [*] , 12); 126 (G ₆ H ₁ 0 [*] , 5).	CyH3 27 27 27 27 27 (13) (20) (13) (20) (13) (20) (13) (20) (10) (10) (10) (10) (10) (10) (13) (20) (20) (20) (20) (20) (20) (20) (20	C2H3 27 27 27 (13) (20) Weitery Fragmente treten auf bei: 11a: 85 (02H2, Fe', 04H5, °, 70); 43 (03H7, 100). 11a: 85 (02H2, Fe', 04H5, °, 70); 136 (06H1, 0B2, °, 20 11b: 386 (101 ¹³) Br, 700); 136 (06H1, 0B2, °, 20 11b: 27H (1M - 3 CO - 21H ²) 100); 244 (1M - 3 CS	(001)		•	(13)		(16)	(8)	(32)		
(10) (13) (20) (13) (20) Weltere Fragmente treten auf bei The 86 (C ₂ H ₅ Fe', G ₄ H ₅ S', 70); 43 (C ₃ H ₁ D ³ C', 100), 107 (C ₄ H ₅ H ₅ S', 17); 57 (C ₄ H ₉ ⁺ , 20); 55 (C ₄ H ₇ ⁺ , 73); 43 (C ₃ H ₇ ⁺ , 90); 41 (C ₃ H ₅ ⁺ , 93), The 278 (M 8 CO 21H ⁺), 100), 264 ([M 3 CO CH ₁], 100), 250 ([M 3 CO C ₂ H ₆], 10). Thi 236 (M 2 CO 21H ⁺), 680), 211 ([M 2 CO CH ₁], 12); 128 (C ₆ H ₁ O ³ , 5), 124 (C ₂ H ₁ O ⁺ , 50).	(10) (13) (20) (13) (20) (13) (20) (13) (20) (13) (20) (20) (20) (20) (20) (20) (20) (20	(13) (20) Wellenv Fragmente treten auf bel: Da: 86 (02,H5,Fe', 04,H5,S', 70); 43 (03,H7 ⁺ , 100). Thi 380 (111 ⁻⁹) Bc, ⁷)Br, 100); 136 (06,H ₁)DB2,S', 21 The: 278 (14 - 3 CO - 2 H ⁺), 100); 244 (14 - 3 G		-				27				
Weikere Fragmente teten auf bei: IIa: 86 (C2H4, Fe ²) C4H5, 70): 43 (C3H7 ⁺ , 100). IIa: 276 (M = ³ Br. ⁷ ⁹ Br. ¹	Weiterr Fragmente teten auf bei: Thai 86 (C ₂ H ₅ Fe', C ₄ H ₅ S [*] , 70); 43 (C ₃ H ₇ [*] , 100). The: 880 (thu ⁶) Br. ⁷ 8hr, 100); 436 (C ₆ H ₁ DB ₂ S [*] , 20); 107 (C ₄ H ₅ h ₅ S [*] , 17); 57 (C ₄ H ₉ ⁺ , 20); 56 (C ₄ H ₇ ⁺ , 73); 43 (C ₃ H ₇ ⁺ , 90); 41 (C ₃ H ₅ ⁺ , 93). The: 278 (M = 3 CO = 2 H ⁷), 100); 264 (M = 3 CO = CH ₄ ⁷), 100), 250 (M = 3 CO = C ₂ H ₅ ⁷), 100. Th: 266 (M = 3 CO = CH ₄ ⁷), 560; Th: 266 (M = 3 CO = CH ₄ ⁷), 560; Th: 210 (M = 3 CO = CH ₄ ⁷), 560; 113; 136 (C ₆ H ₁ OB ₂ S [*] , 5); 82 (C ₆ H ₁ O [*] , 5). Th: 210 (M = 3 CO = 2 H ⁷), 560; 281 (M = 3 CO = H ⁷), 120; 136 (C ₆ H ₁ OB ₂ S [*] , 5); 82 (C ₆ H ₁ O [*] , 5). Th: 210 (M = 3 CO = 2 H ⁷), 560; 282 (C ₄ H ₅ BFeS [*] , 17), 124 (C ₂ BHFeS [*] , 0); 84 (C ₄ H ₆ BF [*] , 24); 65 (C ₄ H ₆ B [*] , 65); 45 (C ₂ H ₂ F [*] , 20). Th: 210 (M = 3 CO = 2 H ⁵), 56); 200 (M = 3 CO = J = C ₂ H ₅ ⁵), 50, 26 (C ₂ H ₁ O [*] , 5). Th: 210 (M = 3 CO = 2 H ⁵), 610; 262 (C ₄ H ₅ BFeS [*] , 17), 124 (C ₂ BHFeS [*] , 0); 84 (C ₄ H ₆ BF [*] , 24); 65 (C ₄ H ₆ B [*] , 65); 45 (C ₂ H ₂ F [*] , 20). Th: 210 (M = 3 CO = 2 H ⁵), 56); 200 (M = 3 CO = J = C ₂ H ₅ ⁵), 60), 26 (C ₂ H ₁ O [*] , 100).	Wellers Fragmente treten auf hei: Lia: 86 (C2H2Fe'; C4H5S', 70); 43 (C3H7', 100). Lib: 360 (C12 ⁵) 8r, 798r, 100); 136 (C6H1 ₀ D2S', 21 Lib: 278(-144 - 3 C0 - 2 H ²), 100); 244 (14 - 3 C7		· · ·				(10)			•	
Па: 85 (С ₂ Н 5 °F (С ₄ H 5 °K, 70); 43 (С ₃ H ⁺ , 100). Пb: 380 (fur ⁵ I вг. 7 ⁹ B r. 100) 136 (С ₆ Н ₁ D ¹ 2 ⁵ , 26): 107 (С ₄ H 5 ¹ 5 5 (C ₄ H 5 ⁺ , 20): 55 (C ₄ H 7 ⁺ , 73): 43 (C ₃ H 7 ⁺ , 90): 41 (C ₃ H 5 ⁺ , 93). Па: 276 (<i>M</i> = 3 CO = 21 ⁺): 100), 264 (<i>M</i> = 3 CO = CH 5 ⁺): 100), 250 (<i>M</i> = 3 CO = C ₂ H 5 ⁺): 10). ПК: 266 (<i>M</i> = 3 CO = CH 5 ⁺): 56). ПК: 276 (<i>M</i> = 2 CO = CH 7 ⁺): 69). ПК: 210 (<i>M</i> = 2 CO = H 1 ⁺): 69). ПЗ: 136 (C ₆ H 1 0 ¹ 2 ⁻): 12, 126 (C ₆ H 1 0 ⁺): 5). ПК: 210 (<i>M</i> = 2 CO = H 1 ⁺): 63): 221 (<i>M</i> = 2 CO = H 1 ⁺): 123: 128 (C ₆ H 1 0 ⁺): 5).	Па: 86 (С ₂ Н5, Fo ⁺ , C ₂ H5, TO); 43 (С ₃ H7 ⁺ , 100). Thi 369 (Кh ⁻ ⁵ Br, ⁷ 9Br, 100): 136 (С ₆ H ₁ D ² P5 ⁺ , 20): 107 (С ₄ H5, B ₂ S ⁺ , 17); 57 (С ₄ H5 ⁺ , 20): 55 (С ₄ H7 ⁺ , 73): 43 (С ₃ H7 ⁺ , 90): 41 (С ₃ H5 ⁺ , 93). Ta: 276 (M = 3 CO = 2 H ⁻): 100). 264 ([M = 3 CO = CH4 ⁻): 100). 256 ([M = 3 CO = CH4 ⁻): 100). Thi 266 (M = 3 CO = CH4 ⁻): 660). Thi 266 (M = 3 CO = CH4 ⁻): 660). Thi 210 ([M = 2 CO = H ⁻): 650): 113 (C ₆ H ₁ O ² S ⁺ , 5): 82 (C ₆ H ₁ O ⁺ , 5). Thi 210 ([M = 3 CO = H ⁻): 610: 183 (Fo ⁺): 92. 113. 124 (C ₂ HFeS ⁺ , 9): 84 (C ₄ H6BF ⁺ , 24): 65 (C ₄ H6B ⁺ , 65): 45 (C ₂ H ₂ F ⁺ , 20). Thi 1810 ([M = 3 CO = H ⁻): 610: 183 (Fo ⁺): 92. 115. 126 (C ₆ H ₁ O ² S ⁺ , 5): 82 (C ₆ H ₁ O ⁺ , 5). Thi 210 ([M = 3 CO = H ⁻): 610: 183 (Fo ⁺): 92. 115. 126 (C ₆ H ₁ O ² S ⁺ , 5): 84 (C ₄ H6BF ⁺ , 24): 65 (C ₄ H ₆ B ⁺ , 65): 45 (C ₂ H ₂ F ⁺ , 20). Thi 210 ([M = 3 CO = 745 ⁻): 610: 780 (20 - 3 - C ₂ H5 ⁻): 60). 26 (C ₂ H ₂ ⁺ , 100).	La: 86 (C ₁ H ₅ Fe ¹) C ₄ H ₅ S [*] , 70); 43 (C ₃ H ₇ ⁺ , 100). Thi 380 (tur ⁹) Br. ¹ /3Br. 100); 136 (C ₆ H ₁ DB ₂ S [*] , 20 The: 278 (1M - 3CO - 2 H ³), 100); 244 (1M - 3CO										
Прі 360 (Пи ^В Вг. 79вт, 100) 136 (обні рВ2, 20): 107 (Сан5 В2 ⁵ , 17); 57 (Сан9 ⁺ , 20): 66 (Сан1 ⁺ , 73): 43 (С ₃ H1 ⁺ , 90): 41 (С ₃ H5 ⁺ , 93). Пе: 276 (Ім — 3 СО — 211 ⁺ , 100). 264 (Ім — 3 СО — СН ₄ ⁺ , 100), 250 (Ім — 3 СО — С ₂ H ₆ ⁺ , 10). ПП: 266 (Ім — 3 СО — СП ₄ ⁺ , 66). ПП: 216 (Ім — 211 ⁺ , 65): 221 (Ім — 2 СО — Н ⁺): 129: 128: 168 (С6H1 об 25, 66H1 об . 6).	The 360 (fur ⁵¹ Br, 7 ⁹ Br, 100) 136 (06 H ₁ DB ₂ S ¹ , 20): 107 (C ₄ H ₅ DS ² , 17); 57 (C ₄ H ₅ ⁻¹ , 25): 55 (C ₄ H ₇ ⁻¹ , 73): 43 (C ₃ H ₇ ⁻¹ , 90): 41 (C ₃ H ₅ ⁻¹ , 93). The 276 (M = 3CO − CH ¹), 100), 264 (M = 3CO − CH ₄ ¹), 100), 250 (M − 3CO − C ₂ H ₆ ¹), 10). The 266 (M = 3CO − CH ¹), 569; 186 (M = 3CO − CH ¹), 569; 183 (Fe ³¹ , 92), 158 (C ₆ H ₁ OB ₂ S ⁴ , 5): 82 (C ₆ H ₁ O ² , 5). The 21D (fM = 3CO − H ¹), 569; 183 (Fe ³¹ , 92), 153 (C ₄ H ₅ DB ₂ S ⁴ , 5): 82 (C ₆ H ₁ O ² , 5). The 3CO (fM = 3CO − H ¹), 569; 183 (Fe ³¹ , 92), 153 (C ₄ H ₅ BF ⁵ , 5): 82 (C ₆ H ₁ O ² , 5). The 3CO (fM = 3CO − H ¹), 569; 183 (Fe ³¹ , 92), 153 (C ₄ H ₅ BF ⁵ , 5): 82 (C ₆ H ₁ O ² , 5).	ID: 360 (IU ³¹ Bc, ⁷⁹ Br, 100) 136 (0.6H ₀ B ₂ S [*] , 21 II.e. 278 (1M - 3 CO - 2 H ³ , 100), 264 (1M - 3 CC			• .					-	-	
ина 2616 (М — 3 СО — СПИ), 500, 201 (М — 3 СО — СПИ), 1200, 200 (М — 3 СО — СДИ), 100. ПИ 9:276 (М — 3 СО — СПИ), 561 ИН 9:276 (М — 2 П), 531/221 ((М — 2 СО — Н), 12):136 (С ₆ Н ₁ 0В2 8, 5):82 (С ₆ Н ₁ 0°, 5).	$\begin{array}{l} \textbf{Thr} 266 ([M-3C0-CH_1], 100, 200, 200-CH_2], 120, 200, [M-3C0-C_2H_0], 50, \\ \textbf{Thr} 276 ([M-2H_2], 56), \textbf{Thr} 270 - H^2, 12); 136 (G_{H_1}OB_2 5, 5); 82 (G_{H_1}O^2, 5), \\ \textbf{Thr} 210 ([M-2H_2], 53); 21, 69); 183 (Fa^3, 92), 152 (G_{H_2}BFeS^2, 17), 124 (G_2BHFeS^2, 0); 84 (G_{H_6}BF^2, 24); 65 (G_{H_6}B^2, 65); 46 (G_2H_2 F^2, 20), \\ \textbf{Thr} 310 ([M-3C0-C_2H_5], 6); 183 (Fa^3, 92), 152 (G_{H_5}BFeS^2, 17), 124 (G_2BHFeS^2, 0); 84 (G_{H_6}BF^2, 24); 65 (G_{H_6}B^2, 65); 46 (G_2H_2 F^2, 20), \\ \textbf{Thr} 310 ([M-3C0-C_2H_5], 6); 208 ([M-3C0-J-C_2H_5]), 60), 28 (G_2H_2^2, 100), \\ \textbf{Thr} 335 ([M-3C0-C_2H_5], 6); 208 ([M-3C0-J-C_2H_5]), 60), 28 (G_2H_2^2, 100), \\ \textbf{Thr} 310 ([M-3C0-C_2H_5], 6); 201 (M-3C0-J-C_2H_5]), 60), 20 (G_2H_2^2, 100), \\ \textbf{Thr} 310 ([M-3C0-C_2H_5], 6); 201 (M-3C0-J-C_2H_5]), 60), 20 (G_2H_2^2, 100), \\ \textbf{Thr} 310 ([M-3C0-C_2H_5], 6); 20 ([M-3C0-J-C_2H_5]), 60), 20 ([M-3C0-C_2H_5]), 70), 70 ([M-3C0-C_2H_5]), $		6): 107 (C4H5B	125 ⁺ , 17); 57 (0	C4H9 ⁺ , 26):	55 (C4II-	, 73); 43	(C ₃ H ₇ ⁺ , 9	00); 41 (C ₃	H5 ['] , 93).		
ДП 9: 276 (АМ — 2 И.У. 63): 221 (АМ — 2 СО — И У. 12): 136 (С ₆ Н ₁ 0В2 8°, 5): 82 (С ₆ Н1 ₀ °, 5). Пи: 2107 АМ — 3 СО — ИЛ У. Бам 183 град 921, 152 (С.И. ВР. 85 [°] , 17), 124 (С. ВНР 8° [°] , 0): 84 (С.И. ВР [°] , 24): 65 (С. И. В [°] , 45, (С. И. В [°] , 20).	III 9: 276 (А — 2 Н У. 63): 221 (А — 2 СО — Н У. 12): 136 (С ₆ Н ₁ 0В2 8°. 5): 82 (С ₆ Н ₁ 0°. 5). III. 210 (А — 3 СО — НЈ У. 69): 183 (Р. 1°. 92). 152 (С ₄ Н ₅ ВР Рез [°] . 17), 124 (С ₂ ВНРез [°] . 9): 84 (С ₄ Н ₆ ВР [°] . 24): 65 (С ₄ Н ₆ В [°] . 65): 45 (С ₂ Н ₂ Р [°] . 20). III. 185 (А — 3 СО — С ₂ Н5 У. 6): 208 (А — 3 СО — J — С ₂ Н5 У. 60). 28 (С ₂ Н ₂ [°] . 100). III. 185 (А — 3 СО — С ₂ Н5 У. 6): 208 ((А — 3 СО — J — С ₂ Н5 У. 60). 28 (С ₂ Н ₂ [°] . 100).	III. 266 (M - 8 CO - CII4) 86).	o cm4 f. 1 vo		300 - 6 3H	16 J . 10).				-		•
		(III) 9: 276 ((M - 2 H), 63); 221 ((M - 2 CO - H)	(, 12); 136 (C ₆ H	10B28', 5); 82	2 (C ₆ H ₁₀ ,	5). • 4 (C. U.		1 0/ 30	n ⁺ 061.46			

9.20 eV.

einer terminalen BH-Valenzschwingung zugeordnet werden muss [14].

Massenspektren. Die Molekulargewichte der dargestellten Komplexe wurden massenspektroskopisch ermittelt. Die Molekülionen treten in allen Fällen mit unterschiedlichen relativen Intensitäten auf. Als dominierenden Zerfallsweg beobachtet man die sukzessive Abspaltung der drei CO-Gruppen. Den intensivsten Peak des Spektrums liefert in der Regel das Fragmention {LFe}⁺ (L = Thiadiborolen-Derivat, I). Bemerkenswert erscheint auch die Tatsache, dass in allen Massenspektren weder das Fragmention L⁺ des Thiadiborolen-Liganden, noch die für die unkomplexierten Thiadiborolen-Derivate erhaltenen Fragmentierungsschemata gefunden werden.

Die Fragmentierung verläuft daher unter Erhaltung der Thiadiborolen-Metall-Bindung, ausgehend von {LFe}⁺. Dieser Befund kann als weiteres Indiz für eine intensive Thiadiborolen-Metall-Wechselwirkung gewertet werden.

Strukturanalysen

Einen Einblick in die Wechselwirkungen des Fe(CO)₃-Fragments mit dem Thiadiborolen-Ring erlaubt die Strukturanalyse von Bis(dimethylamino)thiadiborolen-tricarbonyleisen, da zu einem direkten Vergleich der Bindungsabstände auch die Molekülstruktur des freien Liganden vorliegt.

Strukturbeschreibung

Wesentliches Strukturmerkmal von Ie ist eine kristallographisch bedingte C_2 -

TABELLE 6

KRISTALLOGRAPHISCHE DATEN YON 3,4-DIÄTHYL-2,5-BIS(DIMETHYLAMINO)-1,2,5-THIADI-BOROLEN (Ie) SOWIE 3,4-DIÄTHYL-2,5-BIS(DIMETHYLAMINO)-1,2,5-THIADIBOROLEN-TRICAR-BONYLEISEN (IIe)

Ie	Пе
C ₁₀ H ₂₂ B ₂ N ₂ S	C13H22B2FeN2O3S
MolMasse: 22398	MolMasse: 363.90
Farblose Kristalle aus Cyclohexan	Rote Kristalle aus Hexan
a = 5.6274(4) Å	a = 9.0310(8) Å
b = 14.9824(9) Å	b = 9.7214(8) Å
c = 15.921(1) Å	c = 11.0198(8) Å
	$\alpha = 74.598(8)^{\circ}$
	$\beta = 89.658(9)^{\circ}$
	$\gamma = 74.744(9)^{\circ}$
$V = 1342.4 \text{ A}^3$	$V = 899.7 \text{ A}^3$
Z=4	<i>Z</i> = 2
$D_{\rm r} = 1.10 {\rm g}{\rm cm}^{-3}$	$D_{\rm rr} = 1.36 {\rm g}{\rm cm}^{-3}$
Raumgruppe Pcon	Raumgruppe P1
Enraf-Nonius-Diffraktomet	er CAD-4
Wellenlänge Cu-K- 1.54178 Å	Wellenlänge Mo-Kz 0.71069 Å
Nickel-Filter	mit Graphit-Monochromator
3059 Reflexe hel und hel gemessen, und zu 1367	3369 Reflexe hkl. hkl. hkl und hkl gemessen, da-
Reflexen hkl gemittelt, davon 596 als unbe-	von 382 als unbeobachtet klassifiziert
obachtet $(1/\sigma(1) \le 2.0)$ klassifiziert	$(1/\sigma(l) \le 2.0)$
Struktur mit direkten Methoden ermittelt und	Struktur mit direkten Methoden ermittelt und
anisotrop (H-Atome isotrop) zu R = 0.048	anisotrop (einschliesslich H-Positionen) bis
(Rin = 0.048) verfeinert 4	zu R = 0.027 (R., = 0.041) verfeinert a

^a Zur Mess- und Rechenmethode s. [16]. Listen der Struktruamplituden sind auf Wunsch vom Autor (C.K.) erhältlich:

Fig. 2. Die Struktur des Bis(dimethylamino)thiadiborolens (Ie), mit Bindungsabständen (Å).

Achse durch S sowie den Mittelpunkt der Doppelbindung (C(1)-C(1)') (s. Fig. 2). Der fünfgliedrige Heterocyclus ist (±0.005 Å) planar, wobei sich sowohl Atom C(2) der Äthylgruppe wie auch die N-Atome innerhalb der Fehlergrenzen auf dieser Ebene befinden. Bindungsabstände und Winkel entsprechen den zu erwartenden Werten.

Durch Komplexierung der Fe(CO)₃-Einheit lassen sich folgende Änderungen der Ligandengeometrie beobachten:

TABELLE 7

BINDUNGSABS	TANDE (A)	UND WINKEL (') VON Ie

	and the second	 A second sec second second sec		and the second	
S∸B	1,844(4)	C(1)-C(2)	1.517((4)	
B-N	1,390(5)	C(2)-C(3)	1.525	(6)	
B-C(1)	1.590(4)	N-C(4)	1.461((6)	
C(1)C(1')	1.363(4)	N-C(5)	1.467(7)	
	ويجعد المراجع والمعامين والمراجع				전문 생각 전문
BSB'	91,7(2)	에 있는 것이 있는 것이 있는 것이 있다. 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다.			
S-B-C(1)	110.4(2)	C(4)-N-C(5)	110.2	4)	
S-B-N	118.6(2)	B-N-C(5)	123.0	3)	
N-B-C(1)	131.1(3)	-B-N-C(4)	126.9(3)	م من المراجع المحمد المراجع ال المراجع المراجع
B-C(1)-C(1')	113.8(2)	C(2)-C(1)-C(1) 121.9((3)	
B-C(1)-C(2)	124.3(3)	C(1) C(2) C(3) 111.7(3)	
	تجاري والمنافق والمتحج والمتحج والمتحج				

Fig. 3. Die Struktur des Bis(dimethylamino)thiadiborolen-tricarbonyleisen (IIe), mit Bindungsabständen (Å).

1. Aufweitung der C=C-Bindung (1.363 \rightarrow 1.447 Å) wie auch der B-S-Bindungen (1.844 - 1.876 Å), jedoch eine Verkürzung der B-C-Bindungen (1.590 \rightarrow 1.545 Å). Der B–S-Abstand im Komplex IIe lässt sich zwischen B–S-Abstände in Thioboranen (sp²-hybridisiertes Bor) und B-S-Abständen mit tetraedrischem Bor (B-S: 1.93-1.96 Å) einordnen [15].

2. Aufhebung der Planarität des 5-Ringes, bedingt durch geringfügige Umhybridisierung der Bor-Atome wie auch der ringständigen C-Atome von sp² nach

PARELLE 8

(Fortsetzung s. S. 17)

BINDUNGSAB	stände (Å) von	Ile		ander Ander State (1997) Ander State (1997)
FeB(1)	2.428(2)	B(1)-N(1)	1.408(2)	
Fe B(2)	2.401(2)	B(2)N(2)	1.408(3)	
Fe-S	2.383(1)	C(1)O(1)	1.147(3)	
Fe-C(1)	1.805(2)	C(2)-O(2)	1.140(3)	
FeC(2)	1.759(2)	C(3)O(3)	1.141(3)	
Fe-C(3)	1.805(2)	C(4) C(6)	1.521(2)	
Fe-C(4)	2.141(2)	C(5)-C(8)	1.529(3)	
Fe-C(5)	2.147(2)	C(6)-C(7)	1.526(3)	
SB(1)	1.8/4(2)	C(8)-C(9)	1.530(3)	
S-B(2)	1.879(2)	N(1)-C(12)	1.454(3)	
B(1)-C(4)	1.5.7(3)	N(1)C(13)	1.463(2)	
B(2)-C(5)	1.540(3)	N(2)-C(10)	1.451(3)	
C(4)-C(5)	1.447(2)	N(1)C(11)	1.457(3)	

|--|

Atom	a 1997 - 1997	y	
s	2500(1)	2500(1)	335(1)
N	6037(5)	1333(1)	-212(1)
В	4267(7)	1918(2)	-471(1)
C(1)	3418(5)	2204(1)	-1385(1)
C(2)	4482(8)	1848(2)	-2193(2)
C(3)	3361(11)	962(2)	-2450(2)
C(4)	7598(12)	803(3)	749(3)
C(5)	6642(12)	1190(4)	673(2)
H(2A)	6274(65)	1725(21)	2143(19)
H(2B)	4149(50)	2262(16)	-2669(15)
H(3A)	3972(62)	764(19)	-2990(19)
H(3B)	3424(63)	528(23)	-1978(21)
H(3C)	1583(83)	1060(24)	-2571(21)
H(4A)	7113(71)	825(23)	—1353(24)
H(4B)	9273(80)	958(23)	671(22)
H(4C)	7627(85)	- 194(30)	-588(21)
H(5A)	6355(66)	606(25)	812(21)
H(5B)	5706(71)	1571(25)	1019(22)
H(5C)	8101(99)	1444(30)	887(29)

TABELLE 10				1997 - 19	
ATOMKOORDI	NATEN MIT	STANDARDA	BWEICHUNG	EN (X 10	000) VON Ie

TABELLE 9			
WINKEL (°) VON IIe			
S-Fe-B(1)	45.9(1)	B(1)-S-B(2)	93.6(1)
S-Fe-B(2)	46.3(1)	S-B(1)-C(4)	106.6(1)
B(1)-Fe-B(2)	69.0(1)	S-B(1)-N(1)	118.3(1)
B(1)-Fe-C(4)	39.0(1)	S-B(2)-C(5)	106.4(1)
B(1)-Fe-C(5)	66.3(1)	S—B(2)—N(2)	118.1(1)
C(4)-Fe-C(5)	39,4(1)	N(1)-B(1)-C(4)	134.8(2)
B(2)-Fe-C(4)	67.2(1)	N(2)-B(2)-C(5)	135.3(2)
B(2)-Fe-C(5)	39.1(1)	B(1)C(4)C(5)	114.1(1)
C(1)-Fe-C(2)	94.3(1)	B(1)C(4)C(6)	123.6(1)
C(1)-Fe-C(3)	106.6(1)	C(5)-C(4)-C(6)	122.0(1)
C(2)-Fe-C(3)	91.9(1)	C(4)-C(5)-C(8)	121.0(2)
FeSB(1)	68.3(1)	B(2)-C(5)-C(4)	115.3(1)
Fe-S-B(2)	67.4(1)	B(2)-C(5)-C(8)	123.4(2)
Fe-C(4)-B(1)	80.6(1)	B(1)-N(1)-C(12)	122.9(2)
Fe-C(4)-C(5)	70.5(1)	B(1)N(1)C(13)	124.4(2)
F = -B(1) - C(4)	60.5(1)	C(12)-N(1)-C(13)	111.8(2)
Fe-B(1)-S	65.8(1)	C(10)-N(2)-C(11)	111.3(2)
Fe-B(2)-S	66.3(1)	B(2)-N(2)-C(10)	123.0(2)
FeB(2)C(5)	61.5(1)	B(2)-N(2)-C(11)	124.7(2)
FeC(5)B(2)	79.4(1)	C(4)-C(6)-C(7)	113.0(2)
Fe-C(5)-C(4)	70.1(1)	C(5)-C(8)-C(9)	111.3(2)
Fe-C(1)-O(1)	177.7(2)		
FeC(2)O(2)	179.2(2)		
FeC(3)O(3)	178.2(2)		

Atom	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 12	<i>U</i> 13	U23
s	79	89	40		0	0
N	65	66	61	-10	-2	10
B	72	53	48	20	4	2
C(1)	74	51	41	-18	5	2
C(2)	94	66	47	7	7	4
C(3)	121	67	60	8	1	-13
C(4)	84	77	101	6	5	-2
C(5)	97	100	73	-9	-13	25
H(2A)	68			1		
H(2B)	49					· ·
H(3A)	71					
H(3B)	89				1 - A - A - A - A - A - A - A - A - A -	1.14
H(3C)	86				1	
H(4A)	94					
H(4B)	87					
H(4C)	104				100 C 100 C 100 C 100 C	
H(5A)	87					
H(5B)	92					
H(5C)	128	,				

1 TABELLE 11 THERMISCHE PARAMETER (X 1000) VON IC

TABELLE 12

ATOMKOORDINATEN MIT STANDARDABWEICHUNGEN (X 10 000) VON IIe

Atom	× .	у	<u> </u>	
Fe	4233(1)	2108(1)	2000(1)	and the second
S	2866(1)	4631(1)	1075(1)	· · · · · · · · · · · · · · · · · · ·
N(1)	2589(1)	4860(1)	3576(1)	
N(2)	1697(1)	3511(1)	-723(1)	•
B(1)	2457(2)	3986(2)	2770(1)	
B(2)	1985(2)	3302(2)	576(1)	
0(1)	6436(1)	2628(2)	3679(1)	•
0(2)	5054(2)	-1064(1)	3148(1)	
O(3)	5829(2)	1693(2)	-267(1)	
C(1)	5584(2)	2449(2)	3007(1)	
C(2)	4740(2)	183(2)	2702(1)	
C(3)	5197(2)	1875(2)	600(1)	
C(4)	2152(1)	2453(1)	2954(1)	
C(5)	1370(1)	2115(1)	1789(1)	
C(6)	1992(2)	1444(2)	4235(1)	
C(7)	406(3)	1897(3)	4728(2)	
C(8)	1328(2)	751(2)	1795(2)	
C(9)		1135(2)	1638(2)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
C(10)	2129(3)	4649(2)	-1689(1)	
C(11)	1212(3)	2475(3)	-1266(2)	
C(12)	3014(2)	6245(2)	3147(2)	
C(13)	2604(3)	4372(2)	4952(1)	
H(6A)	2842(24)	1464(22)	4839(18)	지수가 있는 것이 같은 것이 없는 것을 하는 것이 없다.
H(6B)	2236(23)	445(22)	4221(18)	
H(7A)	374(30)	1443(29)	5554(23)	
H(7B)	141(28)	2929(27)	4693(22)	
H(7C)	-304(28)	1765(28)	4256(22)	
H(8A).	1786(23)	293(21)	1164(18)	
I(8B)	1667(24)	-72(23)	2616(18)	
T(9A)	-770(34)	349(33)	1563(26)	명이 이 것에 되는 것을 가지 않는 것에 가지 않는 것이다. 것이다. (그렇게 좀 이 같이 같이 있는 것 방법은 이 방법이 제 가지 않는 것이다.
1(9B)	-918(28)	1984(27)	912(23)	: 2011 - 2013년 2011년 1월 2011년 1월 2011 - 2011년 1월 20
T(9C)		1579(28)	2362(24)	
HITOAN	2275/29	5418(30)		21. 전화 전 12. 2014년 11. 12. 12. 12. 12. 12. 12. 12. 12. 12.
		OTTO/OO/		

Atom	x	У.,	2		1
H(10B)	2966(30)	4303(29)	-2115(24)	······································	
H(10C)	1270(30)	5090(28)	-2362(23)		
H(11A)	2112(30)	1962(29)	-1541(22)		
H(11B)	416(30)	3068(28)	-1989(23)		
H(11C)	594(29)	1927(28)	-791(23)		
H(12A)	2794(25)	6663(24)	2311(20)		
H(12B)	2516(29)	6914(28)	3619(23)		
H(12C)	4102(28)	6071(26)	3166(21)	•	
H(13A)	2148(29)	3554(28)	5251(23)		
H(13B)	2084(31)	5201(30)	5274(25)		
H(13C)	3773(32)	3868(31)	5383(25)		

TABELLE 12 (Fortsetzung)

TABELLE 13

THERMISCHE PARAMETER (X 1000) VON IIe

Fe 41 42 48 -10 3 S 67 38 43 -19 6 N(1) 61 49 48 -15 0 N(2) 78 59 46 -5 -6 B(1) 42 41 42 -9 1 B(2) 51 41 51 -5 -1 O(1) 64 122 109 -31 -14 O(2) 100 48 114 2 -19 O(3) 109 114 85 -14 44 C(1) 46 68 68 -16 5 C(2) 52 52 71 -4 -6 C(3) 61 62 67 -7 12 C(4) 40 38 45 -8 3 C(5) 40 36 54 -9 -1 C(6) 70 48 51 -17 9 C(7) 82 96 76 -37	12 8 20 19 10 17
S 67 38 43 -10 6 N(1) 61 49 48 -15 0 N(2) 78 59 46 5 -6 B(1) 42 41 42 -9 1 B(2) 51 41 51 5 -1 O(1) 64 122 109 -31 -14 O(2) 100 48 114 2 -19 O(3) 109 114 85 -14 44 C(1) 46 68 68 -16 5 C(2) 52 52 71 -4 -6 C(3) 61 62 67 -7 12 C(4) 40 38 45 -8 3 C(5) 40 36 54 -9 -1 C(6) 70 48 51 -17 9 C(7) 82 96 76 -37 31 C(8) 61	
N(1)614948 -15 0N(2)785946 -6 -6 B(1)424142 -9 1B(2)514151 -5 -1 O(1)64122109 -31 -14 O(2)100481142 -19 O(3)10911485 -14 44C(1)466868 -16 5C(2)525271 -4 -6 C(3)616267 -7 12C(4)403845 -8 3C(5)403654 -9 -1 C(6)704851 -17 9C(7)829676 -37 31C(8)614380 -18 0C(9)6683127 -39 5C(10)1387646 -18 -1 C(11)10010968 -28 -8 C(12)1046276 -41 6C(13)1117048 -21 -3 H(6B)67 -11 6 -11 -11 H(7A)102 -11 -12 -3 H(8B)69 -11 -12 -3 H(9A)121 -12 -12 -3	-20 19 10 17
N(2) 78 59 46 -6 -6 B(1) 42 41 42 -9 1 B(2) 51 41 51 -5 -1 O(1) 64 122 109 -31 -14 O(2) 100 48 114 2 -19 O(3) 109 114 85 -14 44 C(1) 46 68 68 -16 5 C(2) 52 52 71 -4 -6 C(3) 61 62 67 -7 12 C(4) 40 38 45 -8 3 C(5) 40 36 54 -9 -1 C(6) 70 48 51 -17 9 C(7) 82 96 76 -37 31 C(8) 61 43 80 -18 0 C(9) 66 83 127 -39 5 C(10) 138	19 10 17
B(1) 42 41 42 -9 1 $B(2)$ 51 41 51 -5 -1 $O(1)$ 64 122 109 -31 -14 $O(2)$ 100 48 114 2 -19 $O(3)$ 109 114 85 -14 44 $C(1)$ 46 68 68 -16 5 $C(2)$ 52 52 71 -4 -6 $C(3)$ 61 62 67 -7 12 $C(4)$ 40 38 45 -8 3 $C(5)$ 40 36 54 -9 -1 $C(6)$ 70 48 51 -17 9 $C(7)$ 82 96 76 -37 31 $C(8)$ 61 43 80 -18 0 $C(1)$ 138 76 46 -18 -1 $C(11)$ 100 109 68 -28 -8 $C(12)$ 104	-10 -17
B(2) 51 41 51 5 -1 O(1) 64 122 109 -31 -14 O(2) 100 48 114 2 -19 O(3) 109 114 85 -14 44 C(1) 46 68 68 -16 5 C(2) 52 52 71 -4 -6 C(3) 61 62 67 -7 12 C(4) 40 38 45 -8 3 C(5) 40 36 54 -9 -1 C(6) 70 48 51 -17 9 C(7) 82 96 76 -37 31 C(8) 61 43 80 -18 0 C(9) 66 83 127 -39 5 C(10) 138 76 46 -18 -1 C(11) 100 109 68 -28 -8 C(12) 104 62 76<	-17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
$\begin{array}{cccccc} C(6) & 70 & 48 & 51 & -17 & 9 \\ C(7) & 82 & 96 & 76 & -37 & 31 \\ C(8) & 61 & 43 & 80 & -18 & 0 \\ C(9) & 66 & 83 & 127 & -39 & 5 \\ C(10) & 138 & 76 & 46 & -18 & -1 \\ C(11) & 100 & 109 & 68 & -28 & -8 \\ C(12) & 104 & 62 & 76 & -41 & 6 \\ C(13) & 111 & 70 & 48 & -21 & -3 \\ H(6A) & 68 & & & \\ H(6B) & 67 & & & \\ H(7A) & 102 & & & \\ H(7B) & 98 & & & \\ H(7B) & 98 & & & \\ H(8B) & 69 & & & \\ H(9A) & 121 & & \\ E(2P) & 2P & & & \\ \end{array}$	-14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C(11) 100 109 68 -28 -8 $C(12)$ 104 62 76 -41 6 $C(13)$ 111 70 48 -21 -3 $H(6A)$ 68 -41 6 -21 -3 $H(6A)$ 68 -41 6 -21 -3 $H(7A)$ 102 -3 -41 6 -3 $H(7B)$ 98 -10 -3 -3 -3 $H(7B)$ 98 -3 -3 -3 -3 $H(7C)$ 92 -3 -3 -3 -3 $H(8A)$ 62 -3	
C(12) 104 62 76 -41 6 $C(13)$ 111 70 48 -21 -3 $H(6A)$ 68 $H(7A)$ 102 $H(7B)$ 98 $H(7B)$ 98 $H(7C)$ 92 $H(8A)$ 62 $H(8B)$ 69 $H(9A)$ 121 $E(2B)$ $E(2B)$	49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H(6A) 68 H(6B) 67 H(7A) 102 H(7B) 98 H(7C) 92 H(8A) 62 H(8B) 69 H(9A) 121 Y(0D) 28	-23
H(6B) 67 H(7A) 102 H(7B) 98 H(7C) 92 H(8A) 62 H(8B) 69 H(9A) 121 F(0D) 22	
H(7A) 102 H(7B) 98 H(7C) 92 H(8A) 62 H(8B) 69 H(9A) 121 E(2D) 29	1. S. 15
H(7B) 98 H(7C) 92 H(8A) 62 H(8B) 69 H(9A) 121 F(20) 92	11 - A 14
H(7C) 92 H(8A) 62 H(8B) 69 H(9A) 121 F(2D) 22	
H(8A) 62 H(8B) 69 H(9A) 121 F(2D) 22	
H(8B) 69 H(9A) 121 F(0D) 89	
H(9A) 121	
P(0) 00	
n(96) 68	
H(9C) 100	
H(10A) 99	
H(10B) 98	
H(10C) 99	
H(11A) 100本的方法,可能是这一次是你们的问题,在这次的任何的变量的。	
H(11B) 105% (1993) 105\% (1993) 105\% (1905\% (1993) 105\% (1993) 105\% (1993) 105\% (1993) 105\% (1993) 105\%	
H(11C) 98	
H(12A) 79	
H(12B) 97	
H(12C) 66	
H(13A) 99	
H(13B) 108	
H(13C) 119	

sp³. Die maximalen Abweichungen von planaren (sp²) Anordnungen an C und B betragen lediglich 0.04 Å; trotzdem ergibt sich ein Diederwinkel zwischen den Ebenen B-S-B und B-C-C-B von 161.4°. Definiert man die Ebene durch die Atome S, C(4) und C(5), so liegen die Atome B(1) und B(2) 0.19 bzw. 0.25 Å über, das Fe-Atom jedoch 1.739 Å unter dieser Ebene. Die signifikante Verkürzung der B-C-Abstände (0.04 Å) durch Komplexierung des Liganden am Eisen bestätigt die Annahme der Beteiligung von B-C-Orbitalen als Elektronenakzeptoren gegenüber dem Zentralatom. Dieser Befund steht im Einklang mit vorangegangenen Elektronendichte-Untersuchungen am Benzothiadiborolen-tricarbonyleisen-System [7], wobei π -Elektronendichte in den betroffenen B-C-Bindungen nachgewiesen werden konnte.

3. Wie ebenfalls in Benzothiadiborolen-tricarbonyleisen gefunden, bewirkt der trans-Effekt des Schwefels eine deutliche Verkürzung der entsprechend angeordneten Fe-C-Bindung der Carbonylgruppe C(2)O(2).

Diskussion

Die Thiadiborolen-Derivate Ia-g und Ik reagieren mit $Fe_2(CO)_9$ in Hexan zu thermostabilen, orangeroten- bis tiefroten Thiadiborolen-tricarbonyleisen-Komplexen IIa-g und IIk. Mit Ausnahme der Methylverbindung IId sind die Komplexe hydrolyseempfindlich, d.h. nukleophile Agenzien wie H₂O sind in der Lage, den borständigen Substituenten X zu substituieren. Dies wurde gezielt zur Synthese der Komplexe IIe-j ausgenutzt (vgl. Gl. 4).

Da das freie 2,5-Dihydrothiadiborolen nicht zugänglich ist, ermöglichte die Umsetzung von IIa mit LiBH₄ erstmals die Darstellung dieses durch das Fe(CO)₃-Fragment stabilisierten Liganden. Den Beweis für das Vorliegen von IIh in monomerer, nicht über Wasserstoffbrücken assoziierter Form liefert u.a. das Infrarotspektrum, in dem ν (BH) als starke Bande nur im Bereich für terminale BH-Schwingungen auftritt.

Bei der Synthese von IIe durch Umsetzung von IIa nach Gl. 4 bewirkt ein Überschuss an Dimethylamin die Zerstörung des Komplexes. Offensichtlich schwächt der nukleophile Angriff von Dimethylamin am Bor die Ligand-Eisen-Bindung derart, dass eine Dissoziation eintritt, der eine Ringöffnung unter H₂S-Eliminierung folgt. Im Falle der Umsetzung von Ha mit AsF_3 wird angenommen. dass bei erschwerter Zweitsubstitution zunächst III aus IIi entsteht. Da jedoch in III die Boratome infolge der starken B-F-Rückbindung kaum noch Akzeptoreigenschaften gegenüber dem Fe(CO),-Fragment aufweisen, erfolgt hier eine rasche Dissoziation. Das so freigesetzte 2,5-Difluorthiadiborolen zersetzt sich unter BF₄-Bildung. Bislang sind alle Versuche zur Synthese von Thioboranen, die am sp²-hybridisierten B-Atom neben Schwefel noch Fluor als Substituenten tragen, aufgrund der hohen Bildungstendenz von BF3 gescheitert [15]. Die Verbindung IIi stellt somit das erste, durch Komplexierung stabilisierte Thiofluorboran dar. In diesem Zusammenhang sei erwähnt, dass formal der Ersatz von Schwefel in III durch eine Äthylengruppe zu den von Timms [12] untersuchten 1,4-Difluor-1,4-diborin-tricarbonyleisen-Komplexen führt, die keine Tendenz zur Abspaltung von BF3 aufweisen. Röntgenstrukturuntersuchungen an diesen Verbindungen zeigen eine Verkürzung der B-C-Bindung von 1.56 Å im Liganden auf 1.53 Å im Komplex an [12].

Die Komplexe IIa-k werden durch Oxidationsmittel zerstört. Da bekanntlich das Redoxpotential des Eisens in Komplexverbindungen von den Donor-Akzeptor-Qualitäten der Liganden abhängt, sollte in der Reihe der Thiadiborolen-Komplexe eine gewisse Abstufung gegenüber schwachen Oxidationsmitteln auftreten. Vergleicht man das Verhalten von Jod gegenüber dem Jod- bzw. Methylthio-Komplex (IIa bzw. IIe), so stellt man eine Zunahme des Reduktionspotentials fest. Während IIa in siedendem Hexan nur sehr langsam angegriffen wird, erfolgt mit IIe eine sofortige Zerseztung unter CO-Entwicklung.

Die spektroskopischen und strukturanalytischen Befunde erlauben es, ein qualitatives Bild von den Bindungsverhältnissen in den Komplexen unter Berücksichtigung des *exo*-cyclischen Bor-Substituenten zu zeichnen.

Aufgrund der nachgewiesenen Beteiligung aller Ringatome an der Metall-Ligand-Bindung erfüllen die Thiadiborolen-Komplexe die Strukturmerkmale einer *pentahapto*-Anordnung (Fig. 4a, *nido*-Struktur [8]).

Für die Beschreibung der Bindungsverhältnisse nach der 18-Elektronenregel ist ein 4-Elektronendonor erforderlich. Als solcher fungiert die "Thia-en" Einheit des Liganden, die Boratome übernehmen neben anderen geeigneten Orbitalen Akzeptorfunktionen (Fig. 4b). Diese einfache Betrachtung wird jedoch nicht dem Strukturmerkmal eines kurzen B-C-Bindungsabstandes gerecht. Da die Fe(CO)₃-Gruppe einen Zweielektronendonor darstellt, wäre ein Übergang von Elektronendichte in den Liganden mit der Ausbildung eines zu Thiophen isoelektronischen Thiadiborolen-dianions verbunden (Fig. 4c). Das Vorliegen von kurzen B-C-Bindungen im Benzothiadiborolen-tricarbonyleisen sowie in IIe, dessen B-C-Abstände um 0.04 Å kürzer als im freien Liganden sind, stützt diese Vorstellung. Weiterhin stehen die Ergebnisse der Mössbauer-Untersuchungen mit den oben aufgezeigten Bindungsverhältnissen (Eisen als d^6) im Einklang [9].

Einen eindrucksvollen Beweis für den Einfluss des Substituenten X auf die Komplexierung liefern die ¹¹B-NMR-Spektren. Sie lassen mit zunehmender Lewis-Acidität des Liganden eine steigende Hochfeldverschiebung ($\Delta\delta$) erken-

Fig. 4. Bindungsverhältnisse in Thiadiborolen-tricarbonyleisen-Komplexen.

TABEI	LLE 14					
II B-NI KOMPI	MR-VERSCHIEB LEXEN ª	UNG VON 3,4-DI	ATHYL-2,5-DIM	ETHYL-1,2,5-TH	HADIBOROLEN-	METALL-
L	$L \cdot Ni(CO)_2$	L - Cr(CO)4	· L - Fe(CO)3	L · CoC ₅ H ₅	L[Mn(CO)3]2	L[FeC ₅ H ₅] ₂
66.0	38.4	33.0	27.8	26.8	22.5	12.0
	[8]	[19]		[9]	[1]	[17]

^aδ, ppm: L = 3,4-Diäthyl-2,5-dimethyl-1,2,5-thiadiborolen.

nen, die somit den π -Akzeptorcharakter der BX-Gruppe reflektiert. In diesem Zusammenhang ist eine vergleichende Betrachtung der ¹¹B-Werte von 2,5-Dimethyl-3,4-diäthyl-1,2,5-thiadiborolen-Metallkomplexen von Interesse, da sie den Einfluss der *d*-Elektronenkonfiguration auf die Abschirmung der Bor-Kerne aufzeigt. Wie aus Tab. 14 hervorgeht, sind die $\Delta\delta$ -Werte bei Mn, Fe und Co-Komplexen am grössten, was mit dem Vorliegen eines mehr oder weniger stark ausgeprägten 6 π -Elektronen-Systems (Thiadiborolen-Dianion) erklärbar ist. Erwartungsgemäss tritt dieser Effekt am stärksten bei den Tripeldecker-Komplexen des Mn [1] und Fe [17] auf. Die geringere Verschiebung in den Ni- und Cr-Komplexen interpretieren wir als Hinweis auf eine mehr lokalisierte Metall-Bor-Wechselwirkung, wie dies für verschiedene Metall-Bor-Verbindungen angenommen wird [18].

Insgesamt zeigen die spektroskopischen und strukturellen Daten, dass das 1,2,5-Thiadiborolen einen vorzüglichen Zweielektronen-Akzeptor darstellt und deshalb zur Synthese weiterer Ein- und Zweikernkomplexe (Tripeldecker-Verbindungen) geeignet sein sollte.

Beschreibung der Versuche

Die Versuche wurden unter nachgereinigtem, getrocknetem Stickstoff durchgeführt; die Lösungsmittel waren über Molekularsieben getrocknet. Die Protonenresonanzspektren sind, wenn nicht anders angegeben, in CDCl₃ gegen Tetramethylsilan als int. Standard an den Geräten Varian T-60 und XL-100, die ¹¹B-NMR-Spektren an den Geräten Varian XL-100 und Varian HA-100 aufgenommen. Als Standard diente externes BF₃-Ätherat.

Für die Aufnahme der ¹³C- und ¹⁹F-Resonanzspektren dienten die Geräte Varian CFT-20 bzw. XL-100. Die Schwingungsspektren wurden in KBr-Küvetten (Schichtdicke 50 μ , Lösungsmittel C₂Cl₄) an den Geräten Perkin-Elmer 457 und 225 aufgenommen. Die massenspektroskopischen Untersuchungen sind mit den Geräten CH4 und CH7 der Fa. MAT Bremen durchgeführt worden.

Zur Darstellung der Ausgangsverbindungen wurden die in der Literatur angegebenen Vorschriften benutzt: BJ_3 [20], (JBS)₃ [21], 3,4-Diäthyl-2,5-dijod-1,2,5thiadiborolen, Ia [22].

Die Synthese der Thiadiborolene [23] erfolgte ausgehend von Ia durch Redox-Umsetzungen [Ib (Br_2), Ic (JCl), Ig (Me_2S_2)], durch Substitutionen [Id, Ik ($SnMe_4$), Ie (Me_2NH)] und Ätherspaltung [If (Et_2O)].

3,4-Diäthyl-2,5-dijod-1,2,5-thiadiborolen-tricarbonyleisen (IIa) Zu 2.7 g Ia (6.9 mMol), das sich nicht vollständig in 40 ml n-Hexan löst, wer-

 ŝ

X midol (milo) milite (m) Reaktion- set (min) C H X 3 6.0 6.0 6.0 6.0 6.0 6.0 1 47.8 3 6.0 6.0 6.0 6.0 6.0 10 711 520.6 10.9 1.79 J 47.8 3 5.7 3.8 6.0 10 711 520.6 80.41 (1.90) (47.13) (47.13) 3 5.7 3.8 6.0 110 711 520.5 24.66 2.31 (4.73) (4.73) 6 0 10 71 520.6 80 135.7 (2.0.1 (1.90) (7.70) Me 2.1 2.0 60 110 71 520.4 (30.71) (4.23) (30.71) (4.23) (30.71) (4.20) (30.71) (7.70) (30.71) (30.71) (30.71) (30.71) (30.71) (30.71) (30.71) (30.71) (30.71)	X mMoi mmon m	X midol mine (m) mine (m) mine (m) mine (m) mine (m) remp. (C) Multicles C H X 3 6.9 8.0 C ₆ H ₁₄ 60 11 C ₉ H ₁₀ B ₂ PeJ ₂ O ₃ 10.94 1.79 J 47.8 3 6.9 8.0 C ₆ H ₁₄ 60 11 C ₉ H ₁₀ B ₂ PeC ₃ S 10.94 1.79 J 47.8 3 6.1 8.0 C ₆ H ₁₄ 60 11 C ₉ H ₁₀ B ₂ PeC ₃ S 10.94 1.79 J 47.8 6 8.0 6.0 10 11 C ₉ H ₁₀ B ₂ PeC ₃ S 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.30 2.30 2.30 2.31 2.30 2.30 2.30 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	X MAI (mild) multical (mild) temp. (rd) (moleculargew. C H X J 6.0 6.0 6.0 0.0 10 71 250.5 (20.4) (10.9) J 47.8 J 6.0 6.0 10 71 250.5 (20.4) (10.9) J 47.8 B 3.7 3.8 5.0 10 71 250.5 (20.4) (19.9) J 47.8 B 3.7 5.8 6.0 10 71 250.5 (20.4) (19.9) J 47.8 Me 2.1 2.3 5.0 11 6.0 7.0 11 20.4 2.317 (20.4) (20.4) Me 2.1 2.3 5.0 11 6.0 7.0 20.4 2.317 (20.4) (20.4) Me 2.1 3.3 5.0 11.4 2.3 2.317 (20.4) (20.4) Me 2.1	X mMol (mMol) mile (m) temp. (v) Nub. (s) Notestanses. C H X J 6.0 6.0 6.0 6.0 10 71 59.6 (30.41) (190) 713 J 6.0 6.0 6.0 10 71 59.6 (30.41) (190) 713 B 3.7 3.8 6.6 10 71 59.6 (30.41) (190) 713 C 2.1 3.6 6.0 10 11 59.6 2.38 B13 2.486 2.31 (30.4) Me 2.1 2.0 11 0 11 2.33 2.486 2.31 (30.6) Me 2.1 2.0 11 0 11 0.1 0.0 10 0.0 10 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </th <th>(EtC)3(I</th> <th>1X)2S (I)</th> <th>Fe₂(CO)9</th> <th>Lösungs-</th> <th>Reaktions-</th> <th>Produkt</th> <th>Summenformel</th> <th>Analysen</th> <th>Gef. (ber.) (%)</th> <th></th>	(EtC)3(I	1X)2S (I)	Fe ₂ (CO)9	Lösungs-	Reaktions-	Produkt	Summenformel	Analysen	Gef. (ber.) (%)	
J 6.0 6.1 C_6H_{14} 60 11 $C_9H_10a_7Br_7c_0s$ 19.64 179 J 47.33 Br 3.7 3.8 C_6H_{14} 60 10 71 520.5 19.64 179 J 47.33 C 3.7 3.8 C_6H_{14} 60 10 71 520.5 (20.41) (1.10) (47.33) C 3.3 3.0 100 10 76 $54H_{10}a_{12}r_{7}r_{9}c_{95}s$ 31.38 2.96 C1 20.18 Me 2.1 2.0 C_6H_{14} 60 114 $C_1H_{16}a_{17}r_{9}c_{95}s$ 31.38 2.96 C1 20.16 Me 2.1 2.0 C_6H_{14} 80 114 $C_1H_{16}a_{17}r_{7}c_{95}s$ 31.34 32.31 (2.27) (2.77) Me 2.3 2.3 C_6H_{16} 2.0 $116a_{17}r_{7}r_{95}s$ 31.34 (2.91) (2.91) (2.70) Me 2.3 2.3 C_6H_{14} 2.	J 6.0 6.4 6.0 1.4 7.8 6.4 1.79 J.47.8 Br 3.7 3.8 6.0 1.0 1.1 520.6 1.00 1.79 J.47.8 Br 3.7 3.8 6.0 1.0 1.1 520.5 2.04.1 (1.90) 1.47.8 CH 3.0 1.0 1.0 1.1 520.5 2.46.2 2.30 1.47.8 C 2.1 2.8 0.0 1.0 1.1 520.5 2.46.2 2.31 1.47.8 Meg 2.1 2.6 0.0 1.0 1.1 520.5 2.46.5 2.31 2.30 2.46.5 2.31 3.31 3.31 3.31 <th>J 6.0 6.0 6.0 1.4 C₉H₁0B₂Feb₂O₃S 16.04 1.79 J 47.8 B 3.7 3.8 C₆H₁₄ 60 1.0 71 S20.6 2.46 (1.90) (47.73) C 3.7 3.8 C₆H₁₄ 60 1.0 71 S20.6 2.46 (1.90) (47.73) C 2.2 C₆H₁₄ 60 1.0 78 54.62 (2.91) (1.90) (47.73) Me 2.1 2.0 C₆H₁₄ 60 1.6 C₉H₁₀B₂FeO₃S 31.8 2.66 2.66 (3.61) (3.67) Me 2.1 2.0 C₆H₆ 80 1.6 C₁H₁₆B₂FeO₃S 31.8 2.66 (3.61) Me 2.1 2.0 C₆H₆ 80 1.6 C₁H₁₆B₂FeO₃S 31.8 2.66 (3.61) (3.70) (3.61) (3.71) Me 2.1 2.0 6 70 1.1 C</th> <th>J 6.0 6.1 6.0 6.1 6.0 6.1 6.0 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<></th1.0<></th> <th>J 6.0 8.0 C_0H_{14} 6.0 1.0 1.1 $C_0H_{10}B_{1}Fe_{1}O_{3}$ 19.04 1.79 J 47.8 B 3.7 3.8 C_0H_{14} 60 1.0 7.1 $E20.6$ 2.0.1 1.00 (47.9) J 47.8 B 3.7 3.8 C_0H_{14} 60 1.0 7.1 $E20.6$ 2.0.1 1.00 (47.9) 3.1.88 2.0.8 1.0.1</th> <th>*</th> <th>lomm</th> <th>lion</th> <th>Mittel (mu)</th> <th>temp. (_C) Reaktions- zeit (min)</th> <th>Auto. (%)</th> <th>Molekulargew.</th> <th>D</th> <th>H</th> <th>×</th>	J 6.0 6.0 6.0 1.4 C ₉ H ₁ 0B ₂ Feb ₂ O ₃ S 16.04 1.79 J 47.8 B 3.7 3.8 C ₆ H ₁₄ 60 1.0 71 S20.6 2.46 (1.90) (47.73) C 3.7 3.8 C ₆ H ₁₄ 60 1.0 71 S20.6 2.46 (1.90) (47.73) C 2.2 C ₆ H ₁₄ 60 1.0 78 54.62 (2.91) (1.90) (47.73) Me 2.1 2.0 C ₆ H ₁₄ 60 1.6 C ₉ H ₁₀ B ₂ FeO ₃ S 31.8 2.66 2.66 (3.61) (3.67) Me 2.1 2.0 C ₆ H ₆ 80 1.6 C ₁ H ₁₆ B ₂ FeO ₃ S 31.8 2.66 (3.61) Me 2.1 2.0 C ₆ H ₆ 80 1.6 C ₁ H ₁₆ B ₂ FeO ₃ S 31.8 2.66 (3.61) (3.70) (3.61) (3.71) Me 2.1 2.0 6 70 1.1 C	J 6.0 6.1 6.0 6.1 6.0 6.1 6.0 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""></th1.0<></th1.0<></th1.0<>	J 6.0 8.0 C_0H_{14} 6.0 1.0 1.1 $C_0H_{10}B_{1}Fe_{1}O_{3}$ 19.04 1.79 J 47.8 B 3.7 3.8 C_0H_{14} 60 1.0 7.1 $E20.6$ 2.0.1 1.00 (47.9) J 47.8 B 3.7 3.8 C_0H_{14} 60 1.0 7.1 $E20.6$ 2.0.1 1.00 (47.9) 3.1.88 2.0.8 1.0.1	*	lomm	lion	Mittel (mu)	temp. (_C) Reaktions- zeit (min)	Auto. (%)	Molekulargew.	D	H	×
Bit 3.7 3.8 6.0 10 71 520.5 (20.41) (1.90) (4703) Bit 3.7 3.8 6.6 H14 60 10 71 520.5 (20.41) (1.90) (4703) Cl 2.2 0.6 H14 60 10 79 346.2 (34.81) 2.36 C3.31 B B3.6.3 Me 2.1 2.8 0.6 H14 60 114 0.1 H16.5 (34.31) (2.23) 2.36 (30.41) Me 2.1 2.8 0.6 H14 60 114 0.1 H16.5 (34.31) (2.29) (20.46 Me? 1.8 3.3 0.6 H4 60 114 0.1 H16.5 0.3 H12 0.3 H1 0.3 H1<	Br. 3.7 3.8 (0 10 71 520.5 (20.41) (1.90) (47.03) Br. 3.7 3.8 (5,H1a) 60 110 71 520.5 (2.44) (1.90) (47.03) Cl 2.2 C,6H1a 60 116 79 346.2 (2.941) (2.90) (2.31) (3.651) Me 2.1 2.8 G,6H1a 60 116 79 346.2 (3.113) (2.291) (2.0.4) (3.0.13) Me 2.1 2.8 G,6H1a 60 116 C11H16.87 FeO_3 31.33 2.96 C1<20.5 Me 2.1 2.8 G,6H1a 60 116 C11H16.87 FeO_3 31.33 2.96 C1<20.5 Me 2.1 3.3 G,6H1a 60 116 C11H16.87 FeO_3 31.33 2.29 C3.33 C3.64 Me 2.3 2.90 116 C1.912.98 FeO_3 31.33 32.31 (2.27) (3.613)<	Br. 3.7 3.8 4.0 10 71 550.5 (20.41) (1.90) (47.03) Cl 2.2 2.3 C6H1.4 60 110 71 550.5 (20.41) (1.90) (21.90) (47.03) Me 2.1 2.3 C6H1.4 60 110 716 (36.17) (20.41) (1.90) (23.31) (37.31) (37.31) (37.31) (37.31) (37.31) (37.31) (37.41) (37.6)	Br. 3.7 3.8 6.0 10 71 520.5 (20.41) (1.90) (7.10) Cl 2.2 2.6 6.4 10 11 520.5 (30.11) (37.31) (36.71) Me 2.1 2.3 6.6 10 11 6.9 150.5 (31.17) (21.11) (36.71) (36.73) Me 2.1 2.0 6.4 6.0 116 7.16 7.91 3.6.5 (31.21) (20.41) (1.60.7) (36.73) (31.31) (2.27) (20.44) (20.45)	Br. 3.7 3.8 4.0 10 71 580.5 (24.1) (190) Br. 3.7 3.8 6.0 10 71 580.5 (24.1) (190) Me 2.1 2.0 6.0 10 71 580.5 (24.1) (190) Me 2.1 2.0 6.0 10 71 580.5 343.7 2.13 2.06 (30.10) Me 2.1 2.0 6.0 116 0.0 116 0.114,65 3.1.33 2.06 0.0 7.0 Me 1.1 3.3 0.6 10 7.0 117 0.3.5 0.3.5 0.0 <td></td> <td>6.9</td> <td>6.9</td> <td>C₆H₁₄</td> <td>60</td> <td>IIa</td> <td>C9H10B2FeJ203S</td> <td>19.94</td> <td>1.79</td> <td>.1 .47.8</td>		6.9	6.9	C ₆ H ₁₄	60	IIa	C9H10B2FeJ203S	19.94	1.79	.1 .47.8
u_1 u_1 u_2 u_2 u_1 u_1 u_2 u_2 u_1 u_2 <t< td=""><td>W A/1 A/3 B/3 <thb 3<="" th=""> <thb 3<="" th=""> <thb 3<="" th=""></thb></thb></thb></td><td>W arr 5.0 56H1A 00 11b 56H10BParreo_35 2460 2.38 Br 36.0 Cl 2.2 2.1 56H1A 60 11b 59H10BParreo_35 2460 2.38 Br 36.3 Me 2.1 2.0 10 10 11b 59H10BParreo_35 2460 2.38 26H 610 116 Me 2.1 2.5 56H1A 60 11d 59H16Pro35 24.80 2.31 2.30 NMey 1.8 3.3 56H 80 11d 59H12Fro35 3.13 2.20 3.03 7.60 NMey 1.8 3.3 56H 70 11d 7.170 3.13 2.21 5.17 3.13 2.27 NMey 1.8 3.3 56H 70 11f 7.170 3.13 2.27 3.13 2.27 SMe 2.3 2.3 3.66H 70 11f 7.116 7.77 3.13 3.27</td><td>H AT AD Cold (4) CO HD Cold (10) CO <thco< th=""> <thco< th=""> <thco< th=""></thco<></thco<></thco<></td><td>W M</td><td></td><td></td><td></td><td>40</td><td>10</td><td>12</td><td>529.5</td><td>(20.41)</td><td>(06'1)</td><td>(47.93)</td></t<>	W A/1 A/3 B/3 B/3 <thb 3<="" th=""> <thb 3<="" th=""> <thb 3<="" th=""></thb></thb></thb>	W arr 5.0 56H1A 00 11b 56H10BParreo_35 2460 2.38 Br 36.0 Cl 2.2 2.1 56H1A 60 11b 59H10BParreo_35 2460 2.38 Br 36.3 Me 2.1 2.0 10 10 11b 59H10BParreo_35 2460 2.38 26H 610 116 Me 2.1 2.5 56H1A 60 11d 59H16Pro35 24.80 2.31 2.30 NMey 1.8 3.3 56H 80 11d 59H12Fro35 3.13 2.20 3.03 7.60 NMey 1.8 3.3 56H 70 11d 7.170 3.13 2.21 5.17 3.13 2.27 NMey 1.8 3.3 56H 70 11f 7.170 3.13 2.27 3.13 2.27 SMe 2.3 2.3 3.66H 70 11f 7.116 7.77 3.13 3.27	H AT AD Cold (4) CO HD Cold (10) CO CO <thco< th=""> <thco< th=""> <thco< th=""></thco<></thco<></thco<>	W M				4 0	10	12	529.5	(20.41)	(06'1)	(47.93)
Ci 2.2 2.2 $C_{6}H_{14}$ 60 H_{16} $C_{6}H_{10}B_{2}C_{12}P_{6}O_{3}S$ 31.38 2.60 H_{11} 20.46 $H_{11}B_{12}$ 2.27 $H_{11}B_{12}$ 2.27 $H_{12}B_{12}$ 2.28 H_{12} 2.27 $H_{12}B_{12}$ 2.28 H_{12} 2.27 $H_{12}B_{12}$ 2.28 H_{12} 2.27 $H_{12}B_{12}$ 2.28 H_{12} 2.27 $H_{12}B_{12}$ 2.29 $H_{12}B_{12}$ 2.29 $H_{12}B_{12}$ 2.29 $H_{12}B_{12}$ 2.29 $H_{12}B_{12}$ 2.29 H_{12} 2.27 H_{12} 2.28 H_{12} 2.29 H_{12} 2.28 H_{12} 2.29 H_{12} 2.28 H_{12} 2.29 H_{12} 2.28 H_{12} 2	Cl 2.2 2.1 C ₆ H ₁₄ 6.0 16 C ₉ H ₁₀ h ₂ Cl ₂ PeO ₃ S 31.88 2.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 <th1.0< th=""> 1.0 <th1.0< th=""> 1</th1.0<></th1.0<>	Cli 2.2 2.3 $0_{6}H_{14}$ 6.0 1.6 $0_{6}H_{16}B_{1}FO_{2}S$ 3.3.8 2.6.6 Cli 20.6. Net 2.1 2.0 $0_{6}H_{14}$ 6.0 1.6 $0_{3}H_{13}B_{1}FO_{2}S$ 3.3.8 2.6.6 Cli 20.6. Net 2.1 2.0 $0_{6}H_{14}$ 6.0 1.6 $0_{3}H_{13}B_{1}FO_{2}S$ 3.3.8 2.6.6 3.0.6 1.7.0 2.1.7 2.0.7 2.0.7 2.0.7 2.0.7 2.0.7 2.0.7 2.0.4 2.0.4 2.0.7 2.0.6 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.8 3.0.7 3.0.7 3.0.7 3.0.7 3.0.7 3.0.7 3.0.7 3.0.7 3.0.7 3.0.6	Cl 2.2 2.1 6.1 1.0 2.16 2.16 2.16 2.16 2.16 2.10 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 $3.06.16$ 2.02 $2.06.6$ $3.06.16$ 2.02 $2.06.6$ $3.06.16$ 2.02 $2.06.6$ $3.00.66$	CI 2.2 2.1 $C_{0}H_{14}$ 6.0 116 $C_{1}H_{16}B_{1}FeO_{3}S$ 31.38 2.96 C1 200. Me 2.1 2.0 $C_{0}H_{14}$ 6.0 114 $C_{11}H_{16}B_{1}FeO_{3}S$ 31.31 (2.29) (200. Me 2.1 2.0 $C_{0}H_{14}$ 6.0 114 $C_{11}H_{16}B_{1}FeO_{3}S$ 43.22 $C_{13}H_{13}$ (2.27) Me 2.1 2.0 $C_{0}H_{14}$ 6.0 114 $C_{11}H_{16}B_{1}FeO_{3}S$ 43.22 $C_{13}H_{13}$ (2.27) Me 2.1 $C_{0}H_{14}$ 7.0 117 $C_{11}H_{12}B_{1}FeO_{3}S$ 43.02 C_{03} (7.17) Me 2.3 $C_{0}H_{15}$ 7.0 117 $C_{11}H_{12}B_{1}FeO_{3}S$ 42.02 C_{03} (7.17) Me 2.3 2.9 $C_{0}H_{15}$ 7.0 117 $C_{11}H_{12}B_{1}FeO_{3}S$ 42.02 $C_{0}S_{13}$ (7.17) Me 2.3 2.9 $C_{0}H_{15}$ 7.0 117 $C_{11}H_{12}B_{1}FeO_{3}S$ 42.02 $C_{0}H_{15}$ 4.30 Me 2.3 2.9 $C_{0}H_{15}$ 7.0 117 $C_{11}H_{12}B_{1}FeO_{3}S$ 42.02 $C_{0}H_{13}$ 4.30 Me 2.3 2.9 $C_{0}H_{15}$ 7.0 $C_{11}H_{12}B_{1}FeO_{3}S$ 42.03 (3.51) Me 2.1 A_{17} $C_{0}H_{15}$ 2.0 $C_{0}H_{13}$ 7.0 $C_{0}H_{12}B_{1}FeO_{3}S$ 35.90 (4.30) Me 2.1 A_{17} $C_{0}H_{15}$ 2.0 $C_{0}H_{15}$ 2.0 $C_{0}H_{13}$ 2.0 $C_$	à	8.1	æ.	C6H14 30	60	41 G	CyH10B2Br2FeO3S	24.66	2.38	Br 36.6
Me 2.1 2.b 56 10 79 346.3 (31.10) (2.91) (2.91) (2.0.4 NMe 2.1 2.b G_6H_4 60 11d $C_1H_46B_2FeO_3S$ 43.27 6.17 (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.27) (3.7) (3.27) (3.7) (3.7) (3.7) (3.6) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.7) (3.6) (3.6) (7.7) (7.70) (7.71) (7.71) (7.71) (7.71) <td< td=""><td>Me 2.1 2.0 36 10 79 36.2 (31,19) (2.91) (2.91) (2.04) NMer 1.8 3.0 0 10 79 36.2 (31,19) (2.91) (2.04) NMer 1.8 3.3 0 10 02 30.5 (32.21) (2.27) (31,19) (2.91) (20.46) NMer 1.8 3.3 0 10 02 30.5 (42.61) (2.27) (2.17) (2.04) NMe 2.1 0.0 0.1 11 0.1 11 (33.21) (2.27) (31.0) (7.70) SMe 2.3 0.6 10 11 0.1 11 (42.61) (7.70) (42.61) (7.70) (7.70) SMe 2.3 2.0 11 0.1 11 0.17 (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.71) (7.70) (7.71) <</td><td>Me 2.1 2.0 10 79 346.3 (31.10) (2.91) (2.0.46) Me 2.1 2.0 0.6 114 0.1 13.2 6.17 (3.2.1) (2.91) (2.0.46) NMey 1.8 3.3 0.6 10 10 12 12.12 5.17 5.17 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.13 7.16</td><td>Me 21 2.0 50^{-1}_{0} 10 79 346.3 (31.10) (2.91) (20.46) Me 2.1 2.0 6_{0}H₄ 60 11d 0.1H₆ 0.1H₆ 0.1H₆ 0.1H₆ 0.1H₆ 0.1H₆ 0.1H₆ 0.1H₆ 0.1H₆ 0.2H₄ 0.1H₆ 0.1H₆ 0.1H₆ 0.2H₁₄ 0.1H₆ 0.1H₆ 0.1H₁₆ 0.1</td><td>Me 2.1 2.6 36 10 76 36.5 111 (2.91) (2.01) NMe7 1.8 3.3 C_6H_{14} 60 114 $C_{11}H_{16}B_{2}FeO_{3}S$ $4.3.27$ 5.17 5.27 NMe7 1.8 3.3 C_6H_{16} 80 114 $C_{13}H_{20}B_{2}FeO_{3}S$ $4.3.27$ 5.17 5.27 6.03 8.03 8.03</td><td>Ũ</td><td>2.2</td><td>2.2</td><td>CoH14</td><td>60</td><td>11e</td><td>CoHIOB2Cl2FeO1S</td><td>31.38</td><td>2.96</td><td>CI 20.5</td></td<>	Me 2.1 2.0 36 10 79 36.2 (31,19) (2.91) (2.91) (2.04) NMer 1.8 3.0 0 10 79 36.2 (31,19) (2.91) (2.04) NMer 1.8 3.3 0 10 02 30.5 (32.21) (2.27) (31,19) (2.91) (20.46) NMer 1.8 3.3 0 10 02 30.5 (42.61) (2.27) (2.17) (2.04) NMe 2.1 0.0 0.1 11 0.1 11 (33.21) (2.27) (31.0) (7.70) SMe 2.3 0.6 10 11 0.1 11 (42.61) (7.70) (42.61) (7.70) (7.70) SMe 2.3 2.0 11 0.1 11 0.17 (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.70) (7.71) (7.70) (7.71) <	Me 2.1 2.0 10 79 346.3 (31.10) (2.91) (2.0.46) Me 2.1 2.0 0.6 114 0.1 13.2 6.17 (3.2.1) (2.91) (2.0.46) NMey 1.8 3.3 0.6 10 10 12 12.12 5.17 5.17 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.17 5.27 5.13 7.16	Me 21 2.0 50^{-1}_{0} 10 79 346.3 (31.10) (2.91) (20.46) Me 2.1 2.0 6_{0} H ₄ 60 11d 0.1 H ₆ 0.2 H ₄ 0.1 H ₆ 0.1 H ₆ 0.1 H ₆ 0.2 H ₁₄ 0.1 H ₆ 0.1 H ₆ 0.1 H ₁₆ 0.1	Me 2.1 2.6 36 10 76 36.5 111 (2.91) (2.01) NMe7 1.8 3.3 C_6H_{14} 60 114 $C_{11}H_{16}B_{2}FeO_{3}S$ $4.3.27$ 5.17 5.27 NMe7 1.8 3.3 C_6H_{16} 80 114 $C_{13}H_{20}B_{2}FeO_{3}S$ $4.3.27$ 5.17 5.27 6.03 8.03	Ũ	2.2	2.2	CoH14	60	11e	CoHIOB2Cl2FeO1S	31.38	2.96	CI 20.5
N6 2.1 2.0 $G_{6}H_{14}$ 60 11d $G_{11}H_{16}B_{7}FO_{3}S$ 43.27 G_{11} NMey 1.8 3.3 $G_{6}H_{6}$ 80 10 G_{2} 305.8 (43.21) (2.27) 6.17 NMey 1.8 3.3 $G_{6}H_{6}$ 70 11e $C_{13}H_{21}B_{17}FeN_{20}S$ 43.02 6.03 N 7.66 OEV 5.0 5.0 10 62 305.8 (2.27) (3.1) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.27) (3.1) (2.27) (3.27) (3.1) (2.27) $(4.2.91)$ (3.10) (7.70) (1.77) (2.28) (3.61) (7.70) (7.70) (1.77) (1.70) (1.77) $(1.2.91)$ (2.61) (7.70) (1.77) (1.77) (1.77) (1.77) (1.77) (1.77) (1.77) (1.77) (1.77)	N6 2.1 2.0 G ₆ H ₁₄ 6.0 11d C ₁ H ₁₆ B ₂ FeO ₃ S 43.27 6.17 NMey 1.8 3.0 50 10 6.2 306.8 43.21 6.17 NMey 1.8 3.0 50 10 6.2 306.8 43.21 6.17 NMey 1.8 3.0 50 90 92 306.8 (43.21) (2.22) 0.0 (7.70 OR 50 50 92 366.8 (43.21) (5.10) (7.70 OR 50 50 21 4.0 51.9 (43.61) (7.70 OR 2.3 2.8 56.4 70 11 21 4.31 (7.70 Ma 2.1 1.14 20 21 1.6 21.4.7.7 (3.8.91 (4.36) (5.51) 1.1 2.0 2.0 1.1 2.0 2.6.14 20 2.6.14 2.6.1 2.6.17 (4.36) 2.6.13 (7.70	N6 2.1 2.0 G_6H_{14} 60 11d $G_{11}H_6B_2FeO_3S$ 4.3.27 G_{11} NMey 1.8 3.0 50 10 62 306.8 (4.3.21) (2.27) (5.1) NMey 1.8 3.3 C_6H_6 80 11e $C_{11}H_2 2b_1FeO_5S$ (4.3.21) (2.27) (7.70) ORt 5.0 G_6H_4 70 11f $G_{11}H_1 2b_1FeO_5S$ (4.3.20) (6.10) (7.70) ORt 5.0 5.0 G_6H_4 70 11f $G_{11}H_1 2b_1FeO_5S$ (4.3.6) (5.1) (7.70) SMe 2.3 2.0 G_6H_4 70 11f $G_{11}H_1 6B_2FeO_5S$ (4.3.6) (4.30) (7.70) Me 1.6 $G_{11}H_1 6B_2FeO_5S$ $3.5.0$ 4.30 (7.70) (7.70) Me 2.1 1.1 6.0 1.1 $G_{11}H_1 6B_2FeO_5S$ $3.5.0$ $4.3.0$ Me 2.1 1.1 6.0 1.1 <	Me 2.1 2.5 G_6H_{14} 6.0 11d $C_{11}H_{16}B_{2}FeO_{3}S$ $4.3.27$ 6.17 NMey 1.8 3.3 $G_{6}H_{6}$ 80 11 (2.27) (3.17) (3.27) (3.17) (3.27) (3.17) (3.27) (3.17) (3.70) (3.70) (3.70) (3.70) (3.70) (3.17) (3.17) (3.17) (3.17) (3.17) (3.17) (3.17) (3.14) (7.70) (3.14) (7.70) (3.14) (7.70) (3.14) (3.14) $(3$	Me 2.1 2.0 G_6H_14 60 114 G_{11} G_{12} G_{11} G_{11} G_{11} G_{11} G_{11} G_{11} G_{11} G_{22} G_{10} G_{11} G_{22} G_{10} G_{11} G_{22} G_{11} G_{21} G_{11} G_{21}				30	10	79	346.2	(31,19)	(2.91)	(20,46
NMF3 18 3.3 C_6H_6 10 62 300.8 (43.21) (2.27) (2.27) ORe 50 50 50 10 62 300.8 (43.21) (2.27) (3.27) ORe 50 50 $56H_6$ 70 116 $(1,10)$ $(7,10)$ $(4.2.01)$ (6.10) $(7,70)$ SMe 2.3 2.6 60 36.9 $4.2.82$ 56.3 $(7,70)$ Me 2.3 C_6H_1 70 116 $C_1H_1(6B_2FeO_3S)$ 35.96 4.36 $(7,70)$ Me 2.3 2.6 10 10 36.93 4.280 (6.10) $(7,70)$ Me 2.16 11.4 2.0 2.6 1.16 1.16 $2.17.7$ (42.63) 5.613 4.30 Me 2.1 1.16 $2.77.7$ $2.36.93$ $3.6.93$ 4.306 Me 4.7 6.6 110	NH67 18 3.3 5.0 10 6.2 300.8 (43.21) (2.27) OEK 5.0 5.0 5.0 10 62 300.8 (43.21) (2.27) OEK 5.0 7.16 7.16 SMe 2.3 2.8 5.0 11 0 11 4.31 5.1 5.0 7.16 7.16 Me 1.6 1.14 2.0 2.6 11 0 7.16 4.36 5.5 5.6	NMer 1.8 3.3 Gold 10 6.2 30.0.8 (43.21) (2.27) (3.17) (2.27) (3.17) (2.27) (3.17) (2.27) (3.17) (2.27) (3.17) (2.27) (3.17) (3.27) (3.17) (3.27) (3.17) (3.27) (3.16) (7.7) N 1.6 LIBH 2.0 36.1 1.6 2.6 1.1 Cold 1.1 Co	NMey 1.8 3.0 0.0 10 62 300.8 (43.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.21) (2.27) (3.10) (7.70) 0 0 2.3 3.0 3.0 3.0 3.0 (3.10) (7.71) (7.70) (7.71) (7.70) (7.71) (7.71) (7.71) (7.71) (7.71) (7	NMey 1.8 3.3 50 10 62 300.8 (43.21) (2.27) 7.6 CBV 5.0 5.0 5.0 10 92 300.8 6.03 N 7.6 CBV 5.0 5.0 5.0 5.0 5.0 6.03 N 7.6 CM 5.0 5.0 5.0 5.0 5.63 6.33 $0.35.9$ 4.32 6.10 (7.7) SMe 2.3 2.9 5.64 7.0 11 $6.35.1$ $6.33.6$ 6.3 $6.35.1$ $6.33.6$ 4.33 $6.35.1$ <t< td=""><td>Ne</td><td>2.1</td><td>2.0</td><td>C₆H₁₄</td><td>60</td><td>PII</td><td>C₁₁H₁₆B₂FeO₃S</td><td>43.27</td><td>5.17</td><td></td></t<>	Ne	2.1	2.0	C ₆ H ₁₄	60	PII	C ₁₁ H ₁₆ B ₂ FeO ₃ S	43.27	5.17	
OR 5.0 7.7 7.7 7.70 7.70 7.70 7.70 7.70 7.70 7.7 7.7 7.7 7.7 7.7 7.7 7.30 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.3 7.7	OR 5.0 7.7 7.7 5.0 5.0 5.0 7.7 7.7 5.0 5.0 7.7 7.7 7.3 5.0 7.7 7.7 7.3 5.0 7.7 7.7 7.3 6.0 7.7 7.7 7.3 6.0 7.7 7.7 7.3 6.0 7.7 7.7 7.7 7.3 6.0 7.7 7.7 7.3 6.0 7.7 7.7 7.3 7.3 7.3 7.3 <th7.6< th=""> <th7.7< th=""> <th7.6< th=""></th7.6<></th7.7<></th7.6<>	OEK 5.0 7.10 11 7.10 <th< td=""><td>OR 50 90 90 91<</td><td>OEt 5.0 7.0 <th7< td=""><td>NMen</td><td></td><td>e. 6</td><td>30 C. H.</td><td>10</td><td>62 11e</td><td>305.8 C. H. B. R. W. O. S</td><td>(43.21) 43.00</td><td>(2,27)</td><td>00 L IV</td></th7<></td></th<>	OR 50 90 90 91<	OEt 5.0 7.0 <th7< td=""><td>NMen</td><td></td><td>e. 6</td><td>30 C. H.</td><td>10</td><td>62 11e</td><td>305.8 C. H. B. R. W. O. S</td><td>(43.21) 43.00</td><td>(2,27)</td><td>00 L IV</td></th7<>	NMen		e. 6	30 C. H.	10	62 11e	305.8 C. H. B. R. W. O. S	(43.21) 43.00	(2,27)	00 L IV
OE4 5.0 5.0 C_6H_6 70 III $C_{13}H_20B_2FeO_5S$ 42.82 5.63 SMe 2.3 2.8 $5.6H_4$ 70 III $C_{11}H_16B_2FeO_5S$ 42.82 5.63 In 1.6 L/BH_4 $E_{7}0$ 2.6 1.6 5.51 $3.6.96$ 4.36 In 1.6 L/BH_4 $E_{7}0$ 2.6 1.6 5.61 $3.8.96$ 4.36 In 2.1 $Arr 2.6 5.61 1.1 6.0 3.8.96 3.8.11 4.31 In 2.1 Arr 2.6 5.01 5.8 3.8.11 4.31 A.1 2.6 5.61 5.8 3.01 4.7 3.8.11 4.31 A.7 2.6 5.61 5.8 3.01 3.01 A.7 2.6 5.6 5.6 3.01 3.01 A.7 4.7 6.6 3.01 $	OE4 5.0 5.0 C_6H_6 70 III $C_{13}H_20B_2FeO_5S$ 42.82 5.63 SMe 2.3 2.8 30 1 40 365.8 (42.68) (5.51) SMe 2.3 2.8 30 1 60 365.8 (42.68) (5.51) In 1.6 $LIBH_4$ $E_{7}O$ 2.6 1.6 (11.4) 2.0 36.96 4.36 In 1.6 $LIBH_4$ $E_{7}O$ 2.6 11.1 4.31 (4.36) In 2.1 Aar_7 C_6H_6 2.6 111 $4.31.6$ 2.6 6.6 111 $C_{9H_1}B_2reO_3S$ 39.11 4.31 Aar_7 C_6H_6 5.6 5.61 5.8 30.11 $4.31.6$ Aar_7 C_6H_6 4.6 111 $C_{9H_1}B_2reO_3S$ 29.72 3.42 Aar_7 $a.7$ $c.6H_6$ 4.6 11	OEV 5.0 5.0 C_6H_6 70 III $C_{13}H_20B_2FeO_5S$ 42.82 5.63 SMe 2.3 2.8 30 I 40 36.8 (42.68) (5.51) In 1.6 L/BH_4 $E_{7}0$ 2.6 1.6 (111.4) 2.0 38.91 4.33 In 1.6 L/BH_4 $E_{7}0$ 2.6 1.6 $(2.116)_{12}FeO_3S$ 35.91 4.33 In 2.1 $Arr 2.0 2.6 1.11.4 2.0 38.92 (4.36) (4.36) In 2.1 Arr 2.0 2.0 2.0777 (3.8.62) (4.36) In 2.1 Arr 2.072 3.01 4.31 (4.7) (5.61) (5.61) (4.36) (4.36) (4.36) M 2.1 2.6 5.01 3.01 3.01 3.01 3.01 3.01 M 4.7 $	OE 5.0 5.0 C_6H_6 70 III $C_{13}H_2 B^2 FeO_5 S$ 42.82 5.63 SMe 2.3 2.9 $C_6H_1 4$ 70 III C (42.68) (5.51) SMe 2.3 2.9 $C_6H_1 4$ 70 III C (42.68) (5.51) In 1.6 LIBH_4 Et_7 0 2.6 1 60 369.9 (35.72) (4.36) (4.36) In 1.6 LIBH_4 Et_7 0 2.6 11 $C_{9H_{12}B_2FeO_3S$ 35.91 4.31 1.1.6 1.1.4 2.0 2.77 (38.92) (4.36) 1.1.4 2.6 50 58 41.6 (38.92) (4.30) 1.1.4 2.6 11 C_9H_{10}B_2FeO_3S 2.9.2 3.62 4.30 1.1.4 2.1 2.6 11 C_11H_15B_2FeO_3S 2.0.72 3.42 1.1.5 2.6 11 C_11H_15B_2FeO_4S 2.0.72 3.42	OEt 5.0 5.0 C ₆ H ₆ 70 111 C ₁₃ H ₂ 0B ₂ FeO ₅ S 4.282 5.63 SMe 2.3 2.9 C ₆ H ₁₄ 70 114 C ₁₁ H ₁₆ B ₂ FeO ₅ S 4.282 5.63 Im 1.6 Lum4 E ₇ O 2.6 1.6 C ₁₄ H ₁₆ B ₂ FeO ₅ S 35.96 4.36 1.8 La 1.6 Lum4 E ₇ O 2.6 300 1.6 4.31 1.1.4 2.0 2.6 300 79 277.7 38.11 4.31 1.1.4 2.0 2.6 6.0 300 79 277.7 38.11 4.31 1.1.4 2.0 2.6 6.0 30 79 277.7 38.11 4.31 1.1.5 2.1 As 2.6 6.0 30 277.7 3.12 4.36 1.1.5 2.1 3.1 3.1 4.21.6 3.1 4.21.6 3.1 2.1.7 2.1 3.1 2.1.7 <th< td=""><td></td><td></td><td></td><td>30</td><td>30</td><td>92</td><td>363.9</td><td>(42.91)</td><td>6,10)</td><td>(01.7)</td></th<>				30	30	92	363.9	(42.91)	6,10)	(01.7)
SMe 2.3 2.9 60 26.4 70 16 (42.68) (5.51) Lib LibH 2.0 66 36.9 (42.68) (5.51) Li Lib LibH 20 1 60 366.9 (42.68) (5.51) Li Lib LibH 21 LibH 27.77 (42.68) (5.51) Li 2.1 Lib LibH 210 36.93 36.93 36.13 (4.36) Li 2.1 AaF_3 C_6H_6 2.6 111 $C_9H_{10}B_2F^{1}FeO_3S$ 38.11 4.31 Li 2.1 AaF_3 C_6H_6 4.5 111 $C_9H_{10}B_2F^{1}FeO_3S$ 39.11 4.31 Li 2.6 50.h 58 421.6 6.7 (4.36) $(3.3.6)$ J. Me 4.7 C_6H_6 4.5 111 $C_{11}H_{15}B_2FeO_4S$ 29.72 3.42 J. Me 4.7 C_6H_1 60 114 $C_{11}H_{15}B_2FeO_1S$ 28.69 3.01 J. Me 4.7 3.0 2.6 1.1 $C_{11}H_{12}B_2FeO_1S$ 28.76 (3.14) J. Me 4.7	SMe 2.3 2.9 30 2.1 40 366.8 (42.68) (5.1) In 1.6 LIBH Er20 2.6 11 60 366.9 (3.517) (4.36) (5.51) In 1.6 LIBH Er20 2.6 11 60 366.9 (3.572) (4.30) (4.30) In 2.1 LiBH Er20 2.6 11 Coll 79 277.7 (4.30) (4.30) In 2.1 Asr Cold 30 79 29 31.1 4.31 In 2.1 Asr Cold 8 421.6 50.1 51.9 51.2	SMe 2.3 2.9 $G_{0}H_{14}$ 70 16 (42.68) (5.51) Lin Lin Lin Lin Lin (42.68) (5.51) Lin Lin Lin Lin (42.68) (5.51) (5.51) Lin Lin Lin $(2.1H_{16}B_{2}FeO_{3}S)$ 35.96 4.36 (43.61) Lin Lin Er_2O 26 Lin Cold+12B_2FeO_3S 35.96 4.33 Lin 2.1 AaF Cold+6 26 11 Cold+12B_2FeO_3S 35.91 4.33 Lin 2.6 10.7 2.6 11 Cold+10B_2FJFeO_3S 3.42 (4.36) Lin 2.5 El2O 30 11 Cold+10B_2FJFeO_3S $2.9.72$ 3.42 Lin 2.6 10 11 Cold+10B_2FJFeO_3S $2.9.72$ 3.42 Lin 2.1 6.2 4.77 Cold+10B_2F6O_4S $2.9.72$ 3.42 $2.6.6$ 3.01	SMe2.32.9 C_6H_14 701140366.8(42.68)(5.61)LinLinLinLinLinColor11Color36.94.35(35.72)(4.36)LinLinLinLinError25Lin7011Color36.94.35(36.72)(4.36)LinLinLinError25LinColor26LinColor4.33(36.72)(4.36)Lin2.1AaryColor26LinColor26LinColor38.92(4.36)Lin2.1AaryColor26LinColor277.7(38.92)(4.36)Air2.1AaryColor3079277.77(38.92)(4.36)J. Me4.72.61011Color277.77(38.92)(4.36)J. Me4.72.61011Color277.77(38.92)(3.36)J. Me4.72.61011Color277.77(38.92)(3.36)J. Me4.72.61011Color21.47.77(38.72)(3.36)J. Me4.72.61011Color11Color(11.95)(29.60)(3.36)J. Me4.73.03.03.03.013.013.013.013.01State2.610.611Color11Color2.62.6.60(SMe23293024036.8(42.68)(5.51)LinLinColi16036.94.3536.964.35LinLinSo216036.9(3.77)(4.36)LinLin2.02.0116030.9539.114.31LinLin2.1AF3C6H47011C9H1239.114.31Lin2.1AF3C6H62.611C9H1339.114.31Lin0.72.611C9H1027.7738.92(4.36)Lin0.72.611C9H1027.7734.236.95Lin0.72.611C9H1027.7734.234.2Lin0.72.611C9H1027.7734.234.2J.Me4.73.01.16.11.153.953.01J.Me4.73.01.01.15.226.603.35J.Me4.73.01.0321.16.1.133.01J.Me4.73.0301.1C1.14152.8.593.01J.Me4.73.0321.03.23.423.01J.Me4.73.0321.03.013.01J.Me4.73.03.01.03.23.01J.Me4.73.03.03.013.01J.Me4.74.7 <td>Jao</td> <td>5.0</td> <td>6.0</td> <td>C₆H₆</td> <td>70</td> <td>III</td> <td>C₁₃H₂₀B₂FeO₅S</td> <td>42.82</td> <td>5,63</td> <td></td>	Jao	5.0	6.0	C ₆ H ₆	70	III	C ₁₃ H ₂₀ B ₂ FeO ₅ S	42.82	5,63	
2.3 Z_{11} C_{11} <	2.3 2.9 Coldination 70 114 Coldination 4.30 4.31	Sine 2.3 Z.0 C6H14 70 Hg C11H16B2F6O353 35.96 4.35 Lia LiBH4 E720 25 11h 60 366.9 (35.72) (4.30) Lia L6 LiBH4 E720 25 11h C9H12B5F6035 38.911 4.31 Lia 21 AsF3 C6H6 26 11h C9H12B5F6035 38.92) (4.36) Lia 2.1 AsF3 C6H6 26 11h C9H12B5F6035 3.8.92) (4.36) Lia 2.5 50h 66h 68 421.6 (38.92) (4.36) J. Me 4.7 2.6 10h 11h C1H15B2F6045 2.8.69 3.01 J. Me 4.7 C6H3 60 11h C1H15B2F6045 28.69 3.01 J. Me 4.7 C6H3 60 11h C10H13B2F60.05 28.69 3.01 J. Me 4.7 C6H4 60 11h C10H	Sime 2.3 Z_{10} $G_{0}H_{14}$ T_{0} Hg $G_{11}H_{16}B_{2}FeO_{3}S_{3}$ 35.96 4.35 Lia LiBH Z_{1} $U_{11}H_{14}$ $Z_{2}O$ 26 11 $G_{11}H_{16}B_{2}FeO_{3}S_{3}$ 35.96 4.36 Lia LiBH $Z_{1}O$	Sime $Z.3$ $Z.9$ C_0H_14 $T0$ Hg $C_1H_16B_2FeO353$ 35.96 4.36 Lin Lin Lin Lin Lin Lin G_0H_14 T_0 H_2 G_0T_2 (3.72) (4.36) (4.36) Lin Lin Lin L_1G $E_{12}O$ Z6 Lin $G_0H_12B_2FeO35$ $(3.6,72)$ (4.36) Lin 2.1 AaF_3 C_0H_6 2.6 Lin C_0H_1 (4.31) (4.36) (4.77) $(2.9, 60)$ (3.36) (3.14) J. Me 4.7 4.77 $(2.9, 10.3)$ $(2.8, 60)$ (3.36) (3.14) $(2.9, 10.3)$ (3.14) J. Me 4.77 3.01 3.01 3.01 3.01 3.01 3.01				30 -	2 h	40	365.8	(42.68)	(5.51)	
III I.6 LIBH4 E10 26 III C9H12B2F603S 30.11 4.31 IIA 21 AeF_3 26 30 79 277.7 38.92 (4.36) IIA 21 AeF_3 26 11 $C_9H_10B_2FJFeO_3S$ 38.11 4.31 IIA 21 AeF_3 26 11 $C_9H_10B_2FJFeO_3S$ 38.11 4.31 IIA 2.5 50.15 56 50 58 421.6 (4.36) (4.36) IIA 2.5 Et_0 C6H_6 45 11 $C_{11}H_{15}B_2FeO_4S$ 20.72 3.42 3.0 4.7 C10H_{13}B_2FeO_3S a 23.55 3.01 3.0 4.7 6.0 11 C10H_{13}B_2FeO_3S 28.69 3.01 3.0 4.7 3.0 11 C10H_{13}B_2FeO_3S 28.61 3.01 3.0 4.7 3.0 11 6.2 447.7 28.61 3.01 3.	In 1.6 LIBH4 E10 26 III C9H12B_7EO3S 39.11 4.31 11.4 20 30 79 277.7 38.92 (4.36) 11.4 20 30 79 277.7 38.92 (4.36) 11.4 20 30 79 277.7 38.92 (4.36) 11. 21.6 0.7 25 50.h 58 421.6 (4.36) (4.36) 11. 2.5 Et ₂ 0 C ₆ H ₆ 45 11 C ₉ H ₁₀ B ₂ r ¹ reO ₃ S 3 4 2.6 10 1 61 1 61 447.7 (3.35) (3.35) 3.0 4.7 6.0 11 C ₁₀ H ₁₃ B ₂ redO ₃ S 28.69 3.01 3.0 4.7 6.0 11 C ₁₀ H ₁₃ B ₂ redO ₃ S 28.69 3.01 3.0 4.7 30 10 82 417.6 (2.8.76) (3.14)	In 1.6 LIBH4 $E_{7}O$ 26 II CoH12b2FCO3S 39.11 4.31 II 11.4 20 30 79 277.7 38.92) (4.36) II 21 AsF3 C_6H_6 26 11 C_{31} 38.92) (4.36) II 21 AsF3 C_6H_6 26 11 $C_{9H10}D_2FJFeO_3S$ 3 4 4.31 4.36) (4.36)<	In 1.6 L/BH4 E ₂ O 26 10 CpH ₁ 2B ₇ FeO ₃ S 39.11 4.31 II.4 20 30 79 277.7 (38.92) (4.36) II.4 20 30 79 277.7 (38.92) (4.36) II. 21 Asr ₃ C ₆ H ₆ 26 11 C ₃ H ₁ 4.31 II. 2.5 50.h 58 41.6 277.7 (38.92) (4.36) J. Me 4.7 2.6 11 C ₉ H ₁ 0B ₂ rJreO ₃ S a 2 2.4.7 3.42 2.4.7 3.42 J. Me 4.7 6.0 11 C ₁₀ H ₁₃ B ₂ reO ₃ S 2.8.69 3.01 3.0 4.7 6.0 11k C ₁₀ H ₁₃ B ₂ re ₃ O ₃ S 28.69 3.01 3.0 3.0 10 82 417.6 2.8.69 3.01 3.0 4.7 6.0 11k C ₁₀ H ₁₃ B ₂ re ₃ re ₃ O ₃ 28.69 3.01 % Keine berfredigende C, H-Analyten, db	In 1.6 LIBH4 Et_0 26 In CoH12B2F603S 30.11 4.31 II 21 AaP3 20 30 79 277.7 38.92) (4.36) II 2 77.7 26 26 11 69 277.7 (38.92) (4.36) II 2.1 AaP3 C6H6 26 11 C9 277.7 (38.92) (4.36) (4.36) II 0.7 25 50.h 58 421.6 3.42 421.6 2.6 3.42 47.7 2.8 3.01 3.35 J. Me 4.7 4.7 6.1 11 6.1 417.6 2.8.59 3.01 J. Me 4.7 6.7 10 12 8.2 417.6 2.8.59 3.01 J. Me 4.7 6.0 11 6.2 447.7 2.8.59 3.01 J. Me 4.7 6.0 11 6.2 417.6 2.8.59 3.	080	2	A'X	C6H14 30	70 1 h	11g 60	C11H16B2Fe03S3 369-9	35.96	4.35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	II.4 20 30 79 277.7 (38.92) (4.36) II.a 2.1 Aars C6H6 26 11 C9H10Barbe03S (38.92) (4.36) II.a 2.5 C6H6 26 11 C9H10Barbe03S a II.a 2.5 50h 58 421.6 a 20.72 3.42 J.Me 4.7 2.6 10 1 h 62 447.7 (29.60) (3.35) J.Me 4.7 4.7 C6H14 60 11k C10H13B2reados 28.69 3.01 Schne berheddgende C. H-Analvern, da mit AaJ3 verturetnigt. 82 417.6 (3.14) (3.14)	Ila 2.1 11.4 20 30 79 277.7 (38.92) (4.36) Ila 2.1 Aars C6H6 26 26 11 C9H10B3rFeO3S 4 Ila 2.5 C6H6 46 11 C9H10B3rFeO3S a 2.6 Et20 C6H6 46 11 C11H15B2rE04S 20.72 3.42 3.0 4.7 C10H13B2rE003S a 2.6 10 1 h 6.2 447.7 (29.60) (3.35) 3.0 4.7 C10H13B2rE003S 28.69 3.01 3.0 30 10 82 417.6 (3.6.76) (3.14) 6. Keine berholdgende C. H-Analysen, da mit Aalj veruntoingt. 2.6 3.01 (3.14) (3.14)	Ila 2.1 11.4 20 30 79 277.7 (38.92) (4.36) Ila 2.1 $\Lambda a F_3$ $C_6 H_6$ 26 11 C 9H 10 B_2 F J F e O_3 S (4.36) Ila 2.6 Et_2 O C_6 H_6 46 11 C 9H 10 B_2 F J F e O_3 S (4.36) J. Me 4.7 2.6 50 h 68 421.6 a J. Me 4.7 C_6 H_6 46 11 C 11 H 15 B_2 F e O_3 S 29.72 3.42 J. Me 4.7 6.0 11 C 1 H 15 B_2 F e O_3 S 29.72 3.42 J. Me 4.7 6.0 11 C 1 H 15 B_2 F e O_3 S 28.69 3.01 J. Me 4.7 6.0 11 C 1 O H 13 B_2 F e O_3 S 28.69 3.01 Schne betheöligende C, H-Analyten, da mit Aal3 verturelnigt. 32 47.76 (2.8, 76) (3.14)	II.4 20 30 70 277.7 (38.92) (4.30) II.4 2.1 AaF3 C6H6 26 11 C9H10B7FJFe03S 3 II.4 2.5 50h 58 421.6 3 3 J. Me 4.7 2.5 50h 58 421.6 3 3 J. Me 4.7 2.6 4.0 11 6.2 447.7 (2.9.50) (3.35) J. Me 4.7 2.6 10 1.4 6.2 447.7 (2.9.50) (3.35) J. Me 4.7 5.6 1.0 8.2 417.6 (2.9.50) (3.35) J. Me 4.7 5.0 1.0 8.2 417.6 (2.9.50) (3.14) S. Metheberheidigende C. H-Analyten, da mit Aal3 venurethilst. 9.2 417.6 (2.8.76) (3.14)	-	1.6	LIBH4	Et20	26	H	C9H12B2FeO3S	39.11	4.31	
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Ita 2.1 Aary C6H6 26 26 11 C9H10B3rVF03S a 0.7 25 50h 58 421.6 a 20.72 3.42 1a 2.6 2.6 45 11 C11H15B2rE04S 20.72 3.42 3. Me 4.7 2.6 10 1 62 447.7 (29.60) (3.35) 3. Me 4.7 5.6 10 1 62 447.7 (29.60) (3.35) 3. Me 4.7 5.0 10 1 62 447.7 (29.60) (3.35) 5. Me 4.7 6.0 11k C10H13B2realo3S 28.69 3.01 5. Keine berhöligende C. H-Analveen, da mit Aalj vervurednigt. 10 8.2 417.6 (38.76) (3.14)	Ita 2.1 Asr3 C6H6 26 26 11 C9H10B2FJFe03S a Ita 2.6 50 h 68 421.6 a 20.72 3.42 J. Me 4.7 2.6 50 h 68 421.6 a 20.72 3.42 J. Me 4.7 2.6 10 1 h 62 447.7 (29.60) (3.35) J. Me 4.7 C6H14 60 11k C10H13B2FcJO3S 28.69 3.01 Schne berholdgende C. H-Analysen, da mit Asij veruntelnist. 10 82 417.6 (3.14) (3.14)	Ita 2.1 As F_3 CeHe 26 50 h 11 C9H10B2 F FeO3S a Ita 2.5 50 h 58 421.6 a 29.72 3.42 As F_3 CeHe 45 11 C9H10B2 F FeO3S a b a<	Ita 2.1 AaF3 C6H6 26 26 11 C9H10B2FJF603S a Ita 2.6 6.7 26 50.h 58 421.6 a 3.42 A. 2.6 2.6 4.5 11 6.1 41.6 3.42 3.42 A. 2.6 1.0 1.h 6.2 447.7 (29.50) (3.35) A. 4.7 2.6 1.0 1.h 6.2 447.7 (29.50) (3.35) A. 3.0 1.h 6.2 447.7 (2.9.50) (3.35) A. 4.7 5.6 1.h 6.2 417.6 (3.14) A. 3.0 8.2 417.6 (3.14) (3.14) F. Keine berhödigende G. H- Analyten, da mit Aal3 veruntelnigt. 8.2 417.6 (2.8.76) (3.14)			11.4	20	30	79	277.7	(38,92)	(4.36)	
11a 2.5 E(2) $C_{6}H_{6}$ 45 11 $C_{11}H_{15}B_{2}FeO_{4}S$ 20.72 3.42 2.6 10 1 h 62 447.7 (20.60) (3.35) 3. Me 4.7 $C_{6}H_{14}$ 60 11k $C_{10}H_{13}B_{2}FeO_{3}S$ 28.69 3.01 3. Me 4.7 $C_{6}H_{14}$ 60 11k $C_{10}H_{13}B_{2}FeO_{3}S$ 28.69 3.01 30 10 82 417.6 (28.76) (3.14)	Lia 2.5 Et.0 0.01 0.6 4.1.0 2.1.0 2.42 3.42 3. Me 4.7 2.6 10 1 h 6.2 4.47.7 29.50) 3.42 3. Me 4.7 6.7 1 h 6.2 4.47.7 (29.50) (3.35) 3. Me 4.7 5.7 10 11k C ₁₀ H ₁₃ B ₂ FedO ₃ S 28.59 3.01 5. 10 8.2 417.6 (28.50) (3.14) 6 Keine beithöligende C. H-Analyten, da mit Aalj verunreinigt. 10 8.2 417.6 (28.76) (3.14)	Ia 2.5 E1.0 0.1 0.0 92.1.0 2.42 3.42 3, Me 4.7 2.5 10 1 h 6.2 447.7 (29.50) (3.35) 3, Me 4.7 2.5 10 1 h 6.2 447.7 (29.50) (3.35) 3, Me 4.7 6.2 447.7 (29.50) (3.35) 4.7 6.0 11k C ₁₀ H ₁₃ B ₂ FeJO ₃ S 28.58 3.01 9 10 8.2 417.6 (28.76) (3.14) \$Keine betriedigende C, H-Analyten, da mit AaJ verunreinigt. 10 8.2 417.6 (28.76) (3.14)	La 2.5 Et.0 Colin DS 421.0 23.72 3.42 3. Me 2.5 Et.0 ColHo 45 11 C11H15B2FEO48 29.72 3.42 3. Me 2.7 ColHo 45 11 C11H15B2FEO48 29.72 3.42 3. Me 4.7 CoHo 1 62 447.7 (29.60) (3.35) 3. Me 4.7 CoH14 60 11k C10H13B2FedO3S 28.69 3.01 3.0 3.0 10 82 417.6 (28.76) (3.14) #Keine berhecktigende G. H-Analyten, da mit AaJ3 verturelnigt. 10 82 417.6 (28.76) (3.14)	Ila 2.5 Et_20 Cold 6H Ho $^{22.1.0}_{-1.1.6}$ 20.72 3.42 J. Me 4.7 2.6 10 1 62 447.7 (29.50) (3.36) J. Me 4.7 2.6 10 1 62 447.7 (29.50) (3.36) J. Me 4.7 $C_6H_{1.4}$ 60 11k $C_{10}H_{1.3}B_2FeJO_3S$ 28.59 3.01 3.0 3.0 1.0 82 417.6 (2.8.76) (3.14) Keine berhöligende C. H-Analyten. da mit Aal3 verturethigt. 1.0 82 417.6 (2.8.76) (3.14)	H	21	Ar P3	C ₆ H ₆	26	11	C9H10B2FJFeO3S	5	-	
2.6 10 1 62 447.7 29.60 3.35 3. Me 4.7 5.6 10 1 60 11k 0.1 28.59 3.01 30 10 82 417.6 28.59 3.01 3.14	3. Me 4.7 2.6 10 1 h 62 447.7 29.60 3.35 3. Me 4.7 6.7 6.0 11k 6.2 447.7 28.69 3.01 3. Me 4.7 7 7 6.0 11k 6.0 13.35 3. Me 4.7 7 50 10 82 417.6 28.59 3.01 6 Keine berheidigende C. H-Analvern, da mit Aal 3 venurcinist. 10 82 417.6 (28.76) (3.14)	3. Me 2.5 10 1 h 62 447.7 29.60 (3.35) 3. Me 4.7 6.7 6.0 11k 6.0 (3.35) 3. Me 4.7 5.7 6.0 11k 0.0 (3.35) 4.7 5.0 11k 0.0 11k 0.0 (3.35) 6.0 11k 0.0 11k 0.0 (3.14) 7. (5.1) 30 10 82 417.6 (3.14) 6. Keine berhölgende C. H-Analvern, da mit AaJ, verunteinigt. 10 82 417.6 (3.14)	3. Me 4.7 2.6 10 1 h 6.2 4.7.7 (29.60) (3.35) 3. Me 4.7 4.7 C ₆ H ₁₄ 60 11k C ₁₀ H ₁₃ B ₂ FeJO ₃ S 28.69 3.01 3. Me 4.7 30 10 82 417.6 (28.76) (3.14) C Keine berheidigende C. H-Analven, da mit AaJ3 vertureinigt. 10 82 417.6 (28.76) (3.14)	2.6 10 1 62 447.7 (29.50) (3.35) 3. Me 4.7 4.7 50 1 62 447.7 (29.50) (3.35) 3. Me 4.7 50 1 60 1 K C ₁ OH13B2F6JO3S 28.59 3.01 30 10 82 417.6 (3.14) (3.14) 6 Keine berheidigende C. H-Analysen, da mit Auf3 vertureinigt. 82 417.6 (28.76) (3.14)	Lla	2.5	Bt-0	210 Caha	00 D	90 11	921.0 C. H. B. R. P. O. 9	90 79	07.0	
3. Me 4.7 4.7 C₆H₁4 60 IIk C₁₀H₁₃B₂FeJO₃S 28.69 3.01 30 10 82 417.6 (28.76) (3.14)	3. Me 4.7 6.H1 a 6.0 11k C10H13B2FedO3S 28.59 3.01 30 10 82 417.6 (28.76) (3.14) 6. Keine beimölgende C. H-Andvien, da mit Aal3 verunreinigt.	3. Me 4.7 6.1 6.0 11k C10H13B2FedO3S 28.69 3.01 30 10 82 417.6 (28.76) (3.14) 6. Keine beimölgende C. H-Analysen, da mit Aalj veruntelnigt. 82 417.6 (28.76) (3.14)	J. Me 4.7 4.7 C ₆ H ₁ 4 60 IIk C ₁₀ H ₁₃ B ₂ FeJO ₃ S 28.59 3.01 30 10 82 417.6 (3.14) C Keine berhöligende C, H-Analysen, da mit AaJ3 verunteinigt. 82 417.6 (3.14)	J. Me 4.7 4.7 C ₆ H ₁ 4 60 IIk C ₁₀ H ₁₃ B ₂ FeJO ₃ S 28.59 3.01 30 10 82 417.6 23.79) (3.14) F. Keine beithölgende C. H-Analysen, da mit AaJ3 vonuncelnigt. 10 82 417.6 (28.76) (3.14)			2.6	10	11	62	447.7	(29.50)	3.35)	5. 2
417.6 (28.76) (3.14) (3.14)	82 417.6 (28.76) (3.14) (3.14) (3.14) (3.14) (3.14) (3.14)	e Keine beiftidigende C. H-Analyten, da mit Aadj verunreinigt.	o Keine bernölgende C. H-Analyten, da mit Aalj verunreinigt.	A Keine berriödigende C. H-Analysen, da mit Asl3 venunteinigt.	J, Mo	4.	4.7	C6H14	60	IIK	C ₁₀ H ₁₃ B ₂ FeJO ₃ S	28.59	3.01	· · ·
	w keine bernouwende C. H-Aniyyen, da mit Aaj verunteinigt.	. Keine beindeigende C. H-Anilysen, da mit Aal 3 verunteinigt.	. Keine beindeligende C. HAnalyken, da mit Aal 3 verunreinigt.	- Keine beindulgende C. H-Analysen, de mit Asi 3 verunteinigt.				90	10	82	417.6	(28.76)	(3.14)	

den 2.5 g Fe₂(CO), (6.9 mMol) gegeben. Das Reaktionsgefäss wird kurz auf 60°C erwärmt, wobei eine stürmische CO-Entwicklung eintritt. Nach Abziehen des Lösungsmittels und Fe(CO)₅ erfolgt die Isolierung des orangeroten IIa durch Sublimieren bei 90°C/0.01 mmHg. Ausb. 2.6 g (71%), Schmp. 96–98°C (aus Hexan).

Analog wurden IIb, c, d, e, f, g und k nach den in Tab. 15 aufgeführten Versuchsdaten erhalten.

3,4-Diäthyl-2-fluor-5-jod-1,2,5-thiadiborolen-tricarbonyleisen (IIi)

Zur Lösung von 1.35 g IIa (2.5 mMol) in 20 ml Pentan werden 0.12 g AsF₃ (1.7 mMol) in 5 ml Pentan zugetropft und 12 h bei 25°C gerührt. Dabei tritt CO- und BF₃-Entwicklung auf, AsJ₃ fällt aus. Nach Filtrieren wird erneut AsF₃ addiert und nach 8 h aufgearbeitet. Bei 42°C/0.02 mmHg destilliert III als gelbrote Flüssigkeit (0.5 g), die geringe Mengen AsJ₃ enthält und deshalb keine befriedigenden C, H-Analysen ergibt.

Umsetzung von IIa mit Me₂S₂

(a) Die Lösung von 0.8 g IIa (1.5 mMol) und 0.14 g Me₂S₂ (1.5 mMol) in 10 ml C₆H₆ wird 1 h am Rückfluss erhitzt. Nach Abziehen des C₆H₆ destilliert bei $60-65^{\circ}$ C/0.01 mmHg eine schwach gelbe Substanz, die auskristallisiert. Ausb. 0.25 g Ig (70%), Schmp. 55-56°C.

(b) Die Lösung von 0.65 g IIa (1.2 mMol) und 0.12 g Me₂S₂ (1.2 mMol) in 10 ml C₆H₆ wird mit Hg versetzt und 18 h bei 25°C gerührt. Nach Filtrieren und Abziehen des C₆H₆ destilliert bei 65-80°C/0.03 mmHg eine orange-rote Flüssigkeit, die auskristallisiert. Ausb. 0.31 g. Anhand des ¹H-NMR-Spektrums wird das ¹ rlæ₅en eines ≈ 2 : 1-Gemisches aus Ig und IIg festgestellt.

Umsetzung von IIg mit Jod

Die Lösung von 0.44 g IIg (1.2 mMol) und 0.31 g J_2 (1.2 mMol) in 15 ml C_6H_6 wird 1 h bei 25°C gerührt, wobei CO-Entwicklung und Bildung von Fe J_2 auftritt. Bei 100–110°C/0.02 mmHg destillieren 0.27 g Ig (95%), Schmp. 56°C.

Umsetzung von Ha mit Jod

Die Lösung von 1.26 g Ha (3.2 mMol) und 0.82 g J_2 (3.2 mMol) in 10 ml C_6H_6 wird 2 h am Rückfluss erhitzt. Durch Sublimation bei 100-110°C/0.02 mmHg werden 0.76 g Kristalle erhalten, die aufgrund des ¹H-NMR-Spektrums eine ≈ 2 : 1-Mischung von Ia und Ha darstellen.

Darstellung von IIf aus IIa und Diäthyläther

Die Lösung von 1.6 g IIa (3.0 mMol) in 10 ml C_6H_6 wird mit 0.6 g Diäthyläther (8.0 mMol) versetzt und 3 h auf 50°C erwärmt. Durch Destillation bei 50°C/0.1 mmHg werden 0.5 g IIf (40%) erhalten (identifiziert anhand des ¹H-NMR-Spektrums).

Darstellung von IIe aus IIa und Dimethylamin

In die Lösung von 0.58 g IIa (1.1 mMol) in 15 ml C_6H_6 werden 0.3 ml Dimethylamin einkondensiert. Nach Abfiltrieren des Dimethylammoniumjodids erhält man durch Sublimation bei 90° C/0.01 mmHg 0.33 g IIe (83%). Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, danken wir für die Unterstützung dieser Arbeit, der Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie für die Gewährung eines Doktoranden-Stipendiums.

Unser Dank gilt auch den Herren Dr. K. Steinbach und A. Mbonimana für die Aufnahme der Massen- und NMR-Spektren.

Literatur

- 1 W. Siebert und K. Kinberger, Angew. Chem., 88 (1976) 451.
- 2 H. Nöth und U. Schuchardt, J. Organometal. Chem., 24 (1970) 435. 2 H. Noth und U. Schutharus, c. Strandard, 103 (1970) 3563. 3 W. Eri und H. Vahrenkamp, Chem. Ber., 103 (1970) 3563.

- 4 U. Schuchardt, Dissertation, Universität München, 1973.
- 5 H. Nöth und U. Schuchardt, Z. Anorg. Allg. Chem., 418 (1975) 97.
- 6 G. Augustin, Dissertation, Universität Würzburg, 1976.
- 7 W. Siebert, G. Augustin, R. Full, C. Krüger und Y.-H. Tsay, Angew. Chem., 87 (1975) 286.
- 8 W. Siebert, R. Full, C. Krüger und Y.-H. Tsay, Z. Naturforsch. B. 31 (1976) 203.
- 9 R. Full, Dissertation, Universität Würzburg, 1976.
- 10 J. Edwin, Diplomarbeit, Universität Marburg, 1976.
- 11 H. Nöth und H. Vahrenkamp, Chem. Ber., 99 (1966) 1049.
- 12 P.S. Maddren, A. Modinoz, P.L. Timms und P. Woodward, J. Chem. Soc. Dalton Trans., (1975) 1272; J.A. Howard, I.W. Kerr und P. Woodward, Ibid., (1975) 2466.
- 13 R.D. Fischer, Chem. Ber., 93 (1960) 165.
- 14 R.N. Grimes, J. Amer. Chem. Soc., 93 (1971) 261.
- 15 W. Siebert, Chem. Z., 98 (1974) 479.
- 16 D.J. Brauer, C. Krüger, P.J. Roberts und Y.-H. Tsay, Chem. Ber., 107 (1974) 3706.
- 17 W. Siebert, Th. Renk, K. Kinberger und C. Krüger, Angew. Chem., im Druck; vorgetragen auf XVII. International Conference on Coordination Chemistry, Hamburg, Sept. 1976.

ما المراجع الم مستر محمد المراجع المراج

م مستند و مع و من مستند عليه . مرجع مستند و مع من مستند عليه . مرجع مستند و مع مستند عليه .

이 승규는 것이 같은 것이 같아요.

18 R. Weiss und R.N. Grimes, J. Organometal. Chem., 113 (1976) 29 und cit. Lit.

- 19 K. Kinberger, Dissertation, Universität Würzburg, 1976.
- 20 T. Benner, Angew. Chem., 69 (1957) 478.
- 21 M. Schmidt und W. Siebert, Angew. Chem., 78 (1966) 607.
- 22 W. Slebert, R. Full, Th. Renk und A. Ospici, Z. Anorg. Allg. Chem., 418 (1975) 273.

23 W. Siebert, R. Full, J. Edwin und K. Kinberger, in Vorbereitung.